互連焊點(diǎn)熱電耦合下的電遷移行為研究
[Abstract]:With the development of the miniaturization trend of electronic products, the electrical migration becomes an unnegligible reliability problem. The microminiaturization of the push force forces the size of the microsolder joint to decrease continuously, and the current density through the welding spot continues to increase, and the current density through the welding spot is now up to 104A/ cm2. In addition, during the lead-free transition of the electronic product, there will be a combination of lead and lead-free. At present, the research of composite welding spot is still in process and organization performance, and the research of its electromigration reliability is also blank. Therefore, the research on the reliability of the electromigration reliability of the lead-free solder joint and the composite welding spot is of great significance. In this study, the electro-migration behavior of Sn-Ag-Cu lead-free solder joint with different Ag content under the condition of thermoelectric couple is studied. The influence of the influence factors such as Ag content and temperature on the electromigration behavior of the interface is discussed, and the effect of electromigration on the mechanical properties of the solder joint is also studied. In this paper, the electrical migration of Sn-3.0Ag-0.5Cu and Sn-37Pb composite solder joints is studied. The interface behavior of the single-component solder joint and the composite solder joint is discussed, and the growth model of the interface IMC is given, and the average failure time of the electric migration of the solder joint is calculated. The results show that the increase of Ag content in a certain range can effectively improve the reliability and the temperature of the solder joint. The Sn-Sn phase in the solder joint matrix has strong anisotropy, resulting in an imbalance of the atomic flux flowing through the Si-Sn phase during the electromigration process, and the rotation of the crystal grains further indicates that the grain boundary is formed and the depression is formed at the welding spot. The electrical migration has an obvious influence on the tensile property of the solder joint, the tensile strength of the welding spot is reduced, the migration of the interface IMC reduces the bonding strength of the interface and the substrate, and the fracture position of the welding spot is changed from the fracture of the graphite material to the cathode interface. In the study of electromigration behavior of composite solder joint, it was found that the Sn-3.0Ag-0.5Cu mesh eutectic phase in the structure composite solder joint was coarsened under the action of the thermo-electric coupling and migrated from the cathode to the anode. The thickness of the anodic interface of the solder joint was not obviously increased before 500 h, and the large amount of Cu6Sn5 particles in the Sn-3.0Ag-0.5Cu alloy gradually migrated to the anode interface and the thickness of the Sn-3.0Ag-0.5Cu alloy gradually increased. Under the action of electromigration, the change of the IMC thickness of the cathode interface of the welding spot is affected by the thickness of the IMC, and the thickness of the IMC in the anode interface is affected by various factors such as the composition of the alloy, the structure of the welding spot, the time of the energization and the temperature. The current density distribution and temperature distribution in the welding spot are studied by the finite element method. The results show that the current loading mode has a significant influence on the current density distribution in the welding spot, and the Joule heat of the structure composite welding spot is between the lead-free solder joint and the lead-free solder joint. The results of the Black equation show that the average failure time of the structural composite solder joint is between the Sn-Ag-Cu solder joint and the Sn-37Pb solder joint.
【學(xué)位授予單位】:江蘇科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:TG40
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 黃明亮;陳雷達(dá);周少明;;電遷移對Ni/Sn3.0Ag0.5Cu/Cu焊點(diǎn)界面反應(yīng)的影響[J];金屬學(xué)報(bào);2012年03期
2 姚健;衛(wèi)國強(qiáng);石永華;;無鉛電子封裝中的電遷移[J];焊接技術(shù);2010年03期
3 米紹曾;鋁金屬化層中的電遷移[J];宇航材料工藝;1986年04期
4 林華水,田昭武;電遷移微離子色譜及其應(yīng)用[J];分析化學(xué);1993年03期
5 黃明亮;周少明;陳雷達(dá);張志杰;;Ni-P消耗對焊點(diǎn)電遷移失效機(jī)理的影響[J];金屬學(xué)報(bào);2013年01期
6 陳雷達(dá);周少明;黃明亮;;電遷移對Ni/Sn/Ni-P焊點(diǎn)界面反應(yīng)的影響[J];稀有金屬材料與工程;2012年10期
7 D·T·Peterson;高盤鉻;;釓中碳、氮和氧的電遷移[J];稀土與鈮;1974年01期
8 陳軍;毛昌輝;;鋁銅互連線電遷移失效的研究[J];稀有金屬;2009年04期
9 何洪文;徐廣臣;郭福;;電遷移引發(fā)Cu/SnBi/Cu焊點(diǎn)組織形貌的演變[J];稀有金屬材料與工程;2010年S1期
10 徐廣臣;何洪文;聶京凱;郭福;;Ni顆粒對SnBi焊點(diǎn)電遷移的抑制作用[J];電子元件與材料;2008年11期
相關(guān)會議論文 前1條
1 王淵;蘇飛;張錚;;電遷移作用下微焊點(diǎn)的微觀結(jié)構(gòu)變化及宏觀塑性變形[A];北京力學(xué)會第20屆學(xué)術(shù)年會論文集[C];2014年
相關(guān)博士學(xué)位論文 前6條
1 張志杰;微互連焊點(diǎn)液—固電遷移行為與機(jī)理研究[D];大連理工大學(xué);2016年
2 張金松;純錫覆層晶須生長及無鉛焊點(diǎn)電遷移的研究[D];華中科技大學(xué);2008年
3 何亮;基于噪聲的金屬互連電遷移表征方法研究[D];西安電子科技大學(xué);2011年
4 趙智軍;電遷移引致薄膜導(dǎo)線力電失效的研究[D];清華大學(xué);1996年
5 張?jiān)?多物理場下金屬微互連結(jié)構(gòu)的電遷移失效及數(shù)值模擬研究[D];浙江工業(yè)大學(xué);2011年
6 張文杰;制造工藝對超深亞微米鋁互連線電遷移可靠性的影響[D];中國科學(xué)院研究生院(上海微系統(tǒng)與信息技術(shù)研究所);2007年
相關(guān)碩士學(xué)位論文 前10條
1 楊榮華;ULSI銅互連中電遷移可靠性研究及其工藝整合優(yōu)化[D];復(fù)旦大學(xué);2013年
2 趙元虎;無鉛焊點(diǎn)電遷移誘致的界面化合物生長及失效研究[D];浙江工業(yè)大學(xué);2015年
3 袁嬌嬌;銅互連線電遷移和錫須生長研究[D];華中科技大學(xué);2014年
4 田爽;互連焊點(diǎn)熱電耦合下的電遷移行為研究[D];江蘇科技大學(xué);2016年
5 何亮;金屬互連電遷移可靠性的新表征參量研究[D];西安電子科技大學(xué);2006年
6 龍博;集成電路超細(xì)互連線電遷移可靠性研究[D];哈爾濱工業(yè)大學(xué);2010年
7 陳雪凡;考慮多種遷移機(jī)制的電遷移仿真算法研究及靈敏度分析[D];浙江工業(yè)大學(xué);2009年
8 潘松;電遷移條件下無鉛焊點(diǎn)基體溶解的研究[D];大連理工大學(xué);2012年
9 秦敬凱;微互連焊點(diǎn)電遷移失效機(jī)理研究[D];哈爾濱工業(yè)大學(xué);2012年
10 王浩;電遷移壽命預(yù)警電路設(shè)計(jì)[D];廣東工業(yè)大學(xué);2012年
,本文編號:2486957
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/2486957.html