基于COMSOL的微弧氧化過程溫度場分布研究
[Abstract]:Aim to study the effect of temperature field distribution on film formation and surface morphology in the process of micro-arc oxidation. Methods based on a discharge channel of 7075 aluminum alloy during micro-arc oxidation, a mathematical model and a physical model of micro-arc oxidation heat transfer process were established based on the multi-physical field simulation software COMSOL Mutiphysics. Based on the finite element method, the temperature field distribution in the process of micro-arc oxidation film formation is solved, and the temperature-time curve is drawn by selecting the specific reference line and reference point. The temperature longitudinal depth curve, temperature distribution cloud diagram and temperature gradient distribution cloud diagram were drawn at four key time points of 0: 100 ~ 500 渭 s and 1000 渭 s, and the influence of them on the surface morphology of ceramic coatings was investigated. Results the temperature drop rate in the discharge channel was the fastest at 0 ~ 100 渭 s, decreased gradually at 100 ~ 500 渭 s, and decreased at 500 ~ 1000 渭 s, the temperature drop rate was the smallest and tended to be constant at 500 ~ 1000 渭 s. Compared with the central region of the discharge channel, the temperature drop rate is faster and the temperature gradient is larger in the area near the interface between the aluminum oxide film and the aluminum alloy substrate. The longitudinal depth of the highest temperature is 93o 20 ~ 2638 渭 m, which decreases at first and then increases when the maximum temperature is at 1000 渭 s. Conclusion the cooling effect of electrolyte on the microarc oxidation process is mainly within 100 渭 s after the discharge channel is formed. In addition to electrolyte, the interface between alumina film and aluminum alloy substrate has a certain cooling effect in the process of micro-arc oxidation film formation, and the uneven cooling rate in different regions of discharge channel is the main reason for the formation of crater hole on the surface of oxide film.
【作者單位】: 煙臺大學機電汽車工程學院;海軍航空工程學院基礎(chǔ)實驗部;
【基金】:國家自然科學基金資助項目(51405416) 山東省自然科學基金資助項目(ZR2014EEQ024) 山東省科技發(fā)展計劃(2012YD15010)~~
【分類號】:TG174.45
【參考文獻】
相關(guān)期刊論文 前7條
1 唐婉霞;嚴繼康;倪爾鑫;段志操;吳云峰;楊鋼;;微弧氧化的機理及其發(fā)展趨勢[J];熱加工工藝;2016年14期
2 谷萌;李麗;朱翠雯;戴春爽;孫浩;杜強;;基于有限元對電火花放電加工中釹鐵硼材料溫度場的研究[J];熱加工工藝;2013年24期
3 蔣百靈;劉東杰;;制約微弧氧化技術(shù)應(yīng)用開發(fā)的幾個科學問題[J];中國有色金屬學報;2011年10期
4 王艷秋;王岳;陳派明;邵亞薇;王福會;;7075鋁合金微弧氧化涂層的組織結(jié)構(gòu)與耐蝕耐磨性能[J];金屬學報;2011年04期
5 陳宏;郝建民;馮忠緒;;微弧氧化機理及電擊穿模型[J];長安大學學報(自然科學版);2008年05期
6 李華平;柴廣躍;彭文達;陽英;高敏;郭寶平;牛憨笨;;微弧熔區(qū)的淬冷過程及其對氧化鋁膜微觀結(jié)構(gòu)的影響[J];無機材料學報;2008年01期
7 鄧志威,來永春,薛文彬,陳如意,宋紅衛(wèi);微弧氧化材料表面陶瓷化機理的探討[J];原子核物理評論;1997年03期
相關(guān)博士學位論文 前1條
1 辛鐵柱;鋁合金表面微弧氧化陶瓷膜生成及機理的研究[D];哈爾濱工業(yè)大學;2006年
相關(guān)碩士學位論文 前1條
1 馬晉;鋁合金微弧氧化工藝研究[D];武漢理工大學;2003年
【共引文獻】
相關(guān)期刊論文 前10條
1 孫澤;劉浩;孔德軍;;7475鋁合金微弧氧化膜在不同載荷下摩擦-磨損行為[J];熱加工工藝;2017年16期
2 陳超;張玉平;陳為為;程煥武;王魯;;鋁合金表面藍色微弧氧化陶瓷膜的制備及性能研究[J];材料導報;2017年10期
3 姜曼;柴永生;周京;牟玲龍;岳艷麗;;基于COMSOL的微弧氧化過程溫度場分布研究[J];表面技術(shù);2017年05期
4 吳英豪;趙文杰;王武榮;張彥彥;李龍陽;薛群基;;鋁合金表面微/納米結(jié)構(gòu)構(gòu)筑研究進展[J];表面技術(shù);2017年05期
5 王平;伍婷;肖佑濤;蒲俊;徐明;向春浪;郭小陽;;Al_2O_3微粉添加量對鎂合金微弧氧化膜特性影響[J];稀有金屬材料與工程;2017年05期
6 王浩;寧成義;黃億輝;陳曉曉;田傳鑫;張文武;;激光沖擊強化對7075鋁合金干摩擦特性的實驗研究[J];應(yīng)用激光;2017年02期
7 謝W,
本文編號:2418267
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/2418267.html