錐管徑向鍛造工藝及數(shù)值模擬研究
[Abstract]:Radial forging technology is widely used in the machining of long shaft parts and tube parts with internal structure. It is a kind of metal forming technology without chip and precision. The process can significantly improve the shape of the material and enhance the mechanical properties of the parts. At the same time, it has the advantages of high machining precision, high forging efficiency, high material utilization rate and good forming quality. In this paper, the diametral forging process and numerical simulation of the tapered tube, an important part of the fast wire connector, are studied. Both ends of the cone tube are conical and parts are assembled inside the tube. The inner surface quality is very high. The mandrel can not be added in the forming process. The internal surface quality can only be controlled by adjusting the process parameters and controlling the internal surface quality through the deformation of the outer surface. The quality of the inner surface of the cone tube can be measured by the change of the thickness of the cone tube. The more uniform the thickness of the cone tube is, the better the taper of the inner surface of the tube is, and the closer the fit with the internal parts is. The main research work of this paper includes the following aspects: based on the ABAQUS finite element software, the two-dimensional axisymmetric model and three-dimensional finite element model of diametral forging of conical tube are established, and the process parameters are optimized. The experimental results are compared with the simulation results, and the influence of multiple hammers on the quality of radial forging is discussed, and the numerical simulation of radial forging for conical tube parts is studied. Firstly, through process analysis, the process scheme of tapered tube forging is determined. Based on the ABAQUS finite element software, a two-dimensional axisymmetric model of the cone tube is established. The influence of the axial feed quantity and friction coefficient on the wall thickness change of the diametral forging of the cone tube is analyzed by using the single factor variable method. In the three-dimensional finite element model, the claw can drive the billet rotation into a rotating component driving the hammer head to turn around a local coordinate axis at an equal relative angle. The improved model can set a larger mass scaling coefficient under the premise of ensuring the accuracy of the calculation. The calculation efficiency is greatly improved. The correctness of the three-dimensional finite element model is verified by comparing the experimental results with the simulation results. Secondly, the influence of axial feed amount, rotation angle and friction coefficient on the wall thickness of cone tube is studied by orthogonal test, and the minimum value of the maximum wall thickness of cone tube to the mean value of the sum of residual square of unformed curve is taken as the optimization objective. An optimal combination of process parameters was obtained. In addition, the influence of the length of straight wall on the thickness of conical tube is analyzed, and the simulation results are verified by experiments. Then, under the same technological parameters, the effects of two, three and four hammers on the wall thickness of the cone tube are compared, and the information of strain and maximum radial forging force during the forging process of the cone tube are analyzed. Finally, based on the numerical simulation results and experimental verification, the radial forging process of cone tube parts which can not be added with mandrel is studied. The effects of axial feed, rotation angle, friction coefficient and hammerhead cone angle on the wall thickness of cone tube were studied by orthogonal test. The optimal process parameters were obtained to make the thickness of cone tube change uniformly. The relationship between the cone angle of the hammer head and the cone angle of the inner surface of the cone tube is fitted by origin software.
【學(xué)位授予單位】:山東大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TG316
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉永剛;方錐管設(shè)計(jì)制作一例[J];紙和造紙;1990年03期
2 陳得余,于希鎮(zhèn);車削錐管螺紋[J];機(jī)械工人.冷加工;1992年01期
3 廖東太;用計(jì)算機(jī)輔助法展開圓筒上的錐管[J];化工設(shè)備設(shè)計(jì);1997年01期
4 羅玉林;橢圓錐管彎曲模[J];模具通訊;1984年03期
5 宗明東;一種車削錐管螺紋錐度的方法[J];機(jī)床;1988年02期
6 熊富倉;;一種新型的鈦錐管軋機(jī)[J];鈦工業(yè)進(jìn)展;1993年01期
7 孔世忠;清洗方錐管和孔板簡法[J];紙和造紙;1996年04期
8 劉長吉 ,陳學(xué)美;錐管制件展開的計(jì)算機(jī)程序設(shè)計(jì)及其應(yīng)用[J];大慶石油學(xué)院學(xué)報(bào);1987年01期
9 宗銘東;長錐管的車削[J];機(jī)械制造;2001年05期
10 強(qiáng)載炎;;錐管類零件的解析法展開放樣[J];杭氧科技;2005年03期
相關(guān)會議論文 前5條
1 彭愛趙;左躍燦;;錐管的加工[A];塑性加工技術(shù)文集[C];1992年
2 周霖;武彬;陳勇旭;;淺議蝸殼及尾水錐管進(jìn)人門反鎖裝置在瀑布溝電站的應(yīng)用[A];第十九次中國水電設(shè)備學(xué)術(shù)討論會論文集[C];2013年
3 周昊;;影響錐管頸退火機(jī)應(yīng)力穩(wěn)定性原因分析及對策[A];電子玻璃技術(shù)學(xué)術(shù)論文集[C];2004年
4 李文凌;;水電站引水壓力鋼管中直角錐管的制作[A];全國焊接工程創(chuàng)優(yōu)活動經(jīng)驗(yàn)交流會論文集[C];2011年
5 李輝;;飛利浦系列錐管頸傾斜偏心自動量規(guī)工藝技術(shù)參數(shù)及金屬標(biāo)準(zhǔn)件設(shè)計(jì)[A];中國電子學(xué)會真空電子學(xué)分會第十二屆學(xué)術(shù)年會論文集[C];1999年
相關(guān)重要報(bào)紙文章 前1條
1 馮遠(yuǎn);錐管寫乾坤 韻外呈高致[N];中國藝術(shù)報(bào);2013年
相關(guān)碩士學(xué)位論文 前5條
1 周利華;低能電子穿越玻璃直管和錐管的動力學(xué)研究[D];蘭州大學(xué);2016年
2 王星會;錐管徑向鍛造工藝及數(shù)值模擬研究[D];山東大學(xué);2017年
3 譚義海;梭錐管混濁流體分離裝置內(nèi)水力特性試驗(yàn)研究[D];新疆農(nóng)業(yè)大學(xué);2011年
4 王苗;梭錐管水沙兩相流場數(shù)值模擬及結(jié)構(gòu)優(yōu)化研究[D];新疆農(nóng)業(yè)大學(xué);2014年
5 楊海華;梭錐管水力分離水沙機(jī)理試驗(yàn)研究[D];新疆農(nóng)業(yè)大學(xué);2013年
,本文編號:2414925
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/2414925.html