5083鋁合金寬應(yīng)變率下拉壓力學(xué)性能及其本構(gòu)模型描述
[Abstract]:With the wide application of 5083 aluminum alloy in manufacturing industry, especially the development of high-speed train and ship industry, it is required to have good mechanical properties under the condition of high speed collision and large plastic deformation. At the same time, the yield stress, work hardening rate and other parameters will change under different loading rate and temperature. Therefore, it is of great significance to study and analyze the mechanical properties of 5083 aluminum alloy under dynamic load for the design of engineering structures and the numerical calculation of impact problems. In this paper, by means of MTS material testing machine, INSTRON dynamic material testing machine and split Hopkinson test system, the quasi-static test and mechanical tensile and compression tests of 5083 aluminum alloy under medium and high strain rate loading are carried out. The stress-strain curves of 5083 aluminum alloy were obtained at a wide strain rate (2 脳 10-/s-7 脳 103 / s). The experimental results show that the stress-strain curves obtained under the same experimental conditions are always lower than the compression curves in the strengthening stage. The yield stress of tension and compression under different strain rates is basically the same under different loading conditions, and the yield stress varies with the strain rate. When the strain rate is less than 10 / s, The yield stress of the material shows a negative strain rate effect, and then with the increase of the strain rate, the yield stress presents a positive strain rate effect. After entering the yield stage, there is a more obvious law of strain hardening in the form of power rate, and the work hardening rate decreases with the strain rate, which is typical of FCC metal. Based on the above experimental results, this paper summarizes various models that can be used to describe the constitutive relations of 5083 aluminum alloy in impact tests in recent years, and improves the Johnson-Cook model (JC model), which is the most commonly used model to describe the dynamic constitutive relations of 5083 aluminum alloy. Because the damage mechanism of meso-level is not taken into account in this model, the dynamic damage mechanism of this kind of material is analyzed, and the damage theory of ductile metal and the microscopic fracture mechanism are studied. The theory and mechanism of dynamic softening of 5083 aluminum alloy were explained and constitutive equation was introduced. The comparison between the experimental curve and the model curve shows that the simulation has good applicability. The research can provide effective scientific basis, analysis model and necessary reference for the engineering application of the material. In the course of the study, it is found that the original Johnson-Cook constitutive model is simple in form and few in physical parameters, but it belongs to the semi-empirical and semi-physical constitutive model. The drawback is that the mechanical behavior of work hardening rate increases or decreases with strain and strain rate. Therefore, the plastic flow behavior of polycrystalline FCC materials at wide strain rate is systematically analyzed, and the abnormal yield behavior of 5083 aluminum alloy at wide strain rate and the experimental phenomenon of reducing work hardening rate are discussed. The deformation mechanism of the above phenomenon is the result of competition of two-phase alloy elements at different strain rates. Based on the dislocation dynamics concept and thermal activation theory, combined with the strengthening mechanism of alloy elements, the strengthening model of Copley and Kear is introduced to reconstruct the constitutive model of Zerilli-Armstrong. The experimental curves and fitting results are compared. It is proved that this model has better fitting effect than Johnson-Cook constitutive model. By comparing the experimental curve with the curve obtained from the model, the model is fitted well, which indicates that the model has a better ability to predict the plastic flow stress of this kind of material.
【學(xué)位授予單位】:西南交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:TG146.21
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 宋孝浜;王春霞;;纖維增強(qiáng)復(fù)合材料應(yīng)變率效應(yīng)研究進(jìn)展[J];廣西紡織科技;2006年04期
2 甘秋蘭,張俊彥;溫度和應(yīng)變率對(duì)泡沫鎳?yán)煨袨榈挠绊慬J];湘潭大學(xué)自然科學(xué)學(xué)報(bào);2003年04期
3 毛明忠;熊杰;楊斌;熊濤;周凱;;Kevlar~汶964C纖維束拉伸性能的應(yīng)變率和溫度效應(yīng)[J];紡織學(xué)報(bào);2008年11期
4 于水生;盧玉斌;蔡勇;;工程材料的應(yīng)變率效應(yīng)及其統(tǒng)一模型[J];固體力學(xué)學(xué)報(bào);2013年S1期
5 李彰明,楊良坤,王靖濤;巖石強(qiáng)度應(yīng)變率閾值效應(yīng)與局部二次破壞模擬探討[J];巖石力學(xué)與工程學(xué)報(bào);2004年02期
6 吳長(zhǎng)河;馮曉偉;葉培;符志;劉占芳;;應(yīng)變率對(duì)硫化橡膠壓縮力學(xué)性能的影響[J];功能材料;2013年08期
7 金灘,蔡光起;材料的應(yīng)變率強(qiáng)化與磨削加工中的尺寸效應(yīng)[J];中國(guó)機(jī)械工程;1999年12期
8 王學(xué)濱,趙楊峰,張智慧,潘一山;考慮應(yīng)變率及應(yīng)變梯度效應(yīng)的斷層巖爆分析[J];巖石力學(xué)與工程學(xué)報(bào);2003年11期
9 曾智;李玉龍;郭亞洲;陳煊;王雷;;兩種典型鋪層玻璃纖維復(fù)合材料的拉伸力學(xué)行為[J];航空材料學(xué)報(bào);2013年03期
10 陳榮;盧芳云;林玉亮;王瑞峰;;一種含鋁炸藥壓縮力學(xué)性能和本構(gòu)關(guān)系研究[J];含能材料;2007年05期
相關(guān)會(huì)議論文 前10條
1 安彤;秦飛;劉亞男;白潔;;應(yīng)變率效應(yīng)對(duì)微系統(tǒng)封裝焊錫接點(diǎn)力學(xué)行為的影響[A];中國(guó)力學(xué)學(xué)會(huì)學(xué)術(shù)大會(huì)'2009論文摘要集[C];2009年
2 施惠基;蔡明春;牛莉莎;;金屬材料應(yīng)變率相關(guān)的塑性變形細(xì)觀機(jī)制[A];塑性力學(xué)新進(jìn)展——2011年全國(guó)塑性力學(xué)會(huì)議論文集[C];2011年
3 席豐;張?jiān)?;基于J-C模型的受沖擊鋼梁的位移計(jì)算和兩個(gè)應(yīng)變率本構(gòu)模型的比較分析[A];塑性力學(xué)新進(jìn)展——2011年全國(guó)塑性力學(xué)會(huì)議論文集[C];2011年
4 秦q;楊黎明;胡時(shí)勝;;金屬應(yīng)變率效應(yīng)機(jī)理分析[A];第七屆全國(guó)爆炸力學(xué)實(shí)驗(yàn)技術(shù)學(xué)會(huì)會(huì)議論文集[C];2012年
5 關(guān)錦清;周剛;文潮;唐仕英;林英睿;劉曉新;李迅;;20g鋼沖擊拉伸與壓縮特性實(shí)驗(yàn)研究[A];第八屆全國(guó)爆炸力學(xué)學(xué)術(shù)會(huì)議論文集[C];2007年
6 王學(xué)濱;趙楊峰;張智慧;潘一山;;考慮應(yīng)變率及應(yīng)變梯度效應(yīng)的斷層巖爆分析[A];第八屆全國(guó)巖石動(dòng)力學(xué)學(xué)術(shù)會(huì)議論文集[C];2003年
7 梁昌玉;李曉;馬超鋒;;中等應(yīng)變率加載條件下巖石的變形和力學(xué)特性研究進(jìn)展及展望[A];中國(guó)科學(xué)院地質(zhì)與地球物理研究所2012年度(第12屆)學(xué)術(shù)論文匯編——工程地質(zhì)與水資源研究室[C];2013年
8 葉曉明;吳德倫;;應(yīng)變率相關(guān)本構(gòu)理論在聲測(cè)中的應(yīng)用[A];重慶巖石力學(xué)與工程學(xué)會(huì)第一屆學(xué)術(shù)討論會(huì)論文集[C];1992年
9 王永剛;蔣招繡;;高應(yīng)變率和高低溫條件下高強(qiáng)度硬鋁合金壓縮力學(xué)行為實(shí)驗(yàn)研究[A];第七屆全國(guó)爆炸力學(xué)實(shí)驗(yàn)技術(shù)學(xué)會(huì)會(huì)議論文集[C];2012年
10 項(xiàng)笑炎;張春曉;何翔;王武;張磊;;大變形時(shí)溫度和應(yīng)變率對(duì)瀝青混凝土動(dòng)態(tài)力學(xué)性能的影響[A];第3屆全國(guó)工程安全與防護(hù)學(xué)術(shù)會(huì)議論文集[C];2012年
相關(guān)博士學(xué)位論文 前9條
1 朱耀;AA 7055鋁合金在不同溫度及應(yīng)變率下力學(xué)性能的實(shí)驗(yàn)研究[D];哈爾濱工業(yè)大學(xué);2010年
2 王文明;考慮應(yīng)變率效應(yīng)的結(jié)構(gòu)抗震分析方法研究[D];大連理工大學(xué);2013年
3 張皓;材料應(yīng)變率效應(yīng)對(duì)鋼筋混凝土框—剪結(jié)構(gòu)地震反應(yīng)的影響[D];大連理工大學(xué);2012年
4 竺鋁濤;纖維力學(xué)性質(zhì)應(yīng)變率效應(yīng)和針織復(fù)合材料彈道沖擊破壞機(jī)理[D];東華大學(xué);2010年
5 尚世明;普通混凝土多軸動(dòng)態(tài)性能試驗(yàn)研究[D];大連理工大學(xué);2013年
6 宮鳳強(qiáng);動(dòng)靜組合加載下巖石力學(xué)特性和動(dòng)態(tài)強(qiáng)度準(zhǔn)則的試驗(yàn)研究[D];中南大學(xué);2010年
7 羅景潤(rùn);PBX的損傷、斷裂及本構(gòu)關(guān)系研究[D];中國(guó)工程物理研究院;2001年
8 侯仰青;三維機(jī)織物拉伸性質(zhì)應(yīng)變率效應(yīng)實(shí)驗(yàn)和數(shù)值研究&新型蜂窩芯材夾層復(fù)合材料板力學(xué)性能實(shí)驗(yàn)和數(shù)值分析[D];東華大學(xué);2013年
9 鄭宇軒;韌性材料的動(dòng)態(tài)碎裂特性研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2013年
相關(guān)碩士學(xué)位論文 前10條
1 張龍輝;透明聚氨酯膠片動(dòng)態(tài)力學(xué)性能研究[D];華南理工大學(xué);2015年
2 賈培奇;蜂窩鋁材料面內(nèi)尺寸效應(yīng)及應(yīng)變率影響研究[D];太原理工大學(xué);2016年
3 朱俊兒;應(yīng)變率相關(guān)的高強(qiáng)鋼板材屈服準(zhǔn)則與失效模型研究及應(yīng)用[D];清華大學(xué);2015年
4 侯遠(yuǎn);沖擊載荷下深部細(xì)砂巖的力學(xué)性能試驗(yàn)研究[D];河南理工大學(xué);2015年
5 高寧;5083鋁合金寬應(yīng)變率下拉壓力學(xué)性能及其本構(gòu)模型描述[D];西南交通大學(xué);2016年
6 趙九州;三維編織復(fù)合材料沖擊行為與動(dòng)態(tài)強(qiáng)度研究[D];哈爾濱工業(yè)大學(xué);2016年
7 陳冬強(qiáng);考慮應(yīng)變率和溫度影響的道砟膠動(dòng)力特性實(shí)驗(yàn)研究[D];浙江大學(xué);2016年
8 陳朝中;無(wú)定形聚合物力學(xué)行為的應(yīng)變率依賴性研究[D];湘潭大學(xué);2009年
9 劉芳;四步法三維編織復(fù)合材料沖擊拉伸力學(xué)性能[D];東華大學(xué);2005年
10 吳青松;溫度和應(yīng)變率對(duì)低合金鋼力學(xué)行為的影響[D];哈爾濱工程大學(xué);2005年
,本文編號(hào):2402402
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/2402402.html