天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 鑄造論文 >

基于深度學(xué)習(xí)和S試件的五軸機床誤差溯源方法研究與實現(xiàn)

發(fā)布時間:2018-12-08 12:20
【摘要】:今年,我國大飛機C919完成首航,航母艦隊投入使用,國人為之自豪。五軸機床在此發(fā)揮了重要作用。五軸機床在切削自由曲面時具備優(yōu)異的性能,廣泛應(yīng)用于船舶、航空航天、國防軍工等領(lǐng)域。五軸機床在三軸機床基礎(chǔ)上增加了兩個轉(zhuǎn)動軸,提升加工性能的同時極大增加了機構(gòu)運動的復(fù)雜性,目前國內(nèi)外對于五軸機床的加工性能測試缺乏相應(yīng)的評定標準。成都飛機工業(yè)公司根據(jù)國外檢測試件缺陷和實際生產(chǎn)經(jīng)驗設(shè)計出S試件。通過五軸機床切削S試件,能綜合反映機床的加工性能和動態(tài)特性。但目前建立S試件與五軸機床誤差項間的映射函數(shù)較為困難,基于S試件的機床誤差溯源理論仍然有待完善。深度學(xué)習(xí)是一種機器學(xué)習(xí)算法,能夠直接處理圖像等高維結(jié)構(gòu)數(shù)據(jù),自動建立準確的映射函數(shù),在多個相關(guān)領(lǐng)域的取得成功。本文在現(xiàn)有誤差溯源方法基礎(chǔ)上,參考深度學(xué)習(xí)在相關(guān)任務(wù)的應(yīng)用辦法,提出一種基于S試件和深度學(xué)習(xí)的五軸機床誤差溯源方法,對于完善S試件的機床誤差溯源理論并提高五軸機床的加工性能具有重要意義。具體研究內(nèi)容如下:1、設(shè)計實際刀具位姿切削S試件的仿真算法,建立五軸機床單項誤差與S試件輪廓度誤差的正向映射函數(shù)。包括基于多體理論建立五軸機床空間誤差模型、通過Matlab輔助分析各單項誤差與S件輪廓度誤差的對應(yīng)關(guān)系。2、設(shè)計用于擬合S試件與誤差項間映射函數(shù)的深度學(xué)習(xí)卷積神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu),特殊改進包括將S試件三維點云數(shù)據(jù)通過拉伸和投影轉(zhuǎn)化為三張不同維度的誤差圖,為此設(shè)計三通道的結(jié)構(gòu);誤差數(shù)據(jù)的分布不穩(wěn)定,精度高,采用批量正則化操作調(diào)控數(shù)據(jù)分布;實現(xiàn)剪枝策略對網(wǎng)絡(luò)結(jié)構(gòu)進行優(yōu)化。3、實現(xiàn)基于深度學(xué)習(xí)和S試件的五軸機床誤差溯源實驗方案,包括規(guī)劃數(shù)據(jù)集訓(xùn)練策略、規(guī)格標準;基于ipython notebook建立可在線編程、可視化的客戶端測試框架;搭建維護實驗室深度學(xué)習(xí)服務(wù)器與遠端登陸等服務(wù);最后基于Caffe平臺進行實驗,驗證了整體方案的可行性和正確性。
[Abstract]:This year, China's large aircraft C919 completed its first flight, aircraft carrier fleet put into use, Chinese pride. Five-axis machine tools play an important role here. Five-axis machine tool has excellent performance in cutting free surface. It is widely used in ship, aerospace, national defense industry and so on. The five-axis machine tool adds two rotating shafts on the basis of three-axis machine tool, which improves the machining performance and greatly increases the complexity of mechanism movement. At present, there is no corresponding evaluation standard for the testing of machining performance of five-axis machine tool at home and abroad. Chengdu aircraft Industry Company designs S specimen according to the foreign test sample defect and actual production experience. The machining performance and dynamic characteristics of the machine tool can be synthetically reflected by cutting S specimen with five axis machine tool. However, it is difficult to establish the mapping function between S-specimen and five-axis machine tool error term at present, and the theory of machine tool error traceability based on S-specimen still needs to be perfected. Depth learning is a machine learning algorithm, which can directly process high-dimensional structural data such as images, automatically establish accurate mapping functions, and succeed in many related fields. On the basis of existing error tracing methods and referring to the application of depth learning in related tasks, this paper presents a method of error traceability for five-axis machine tools based on S specimen and depth learning. It is of great significance to improve the error tracing theory of S-specimen and improve the machining performance of five-axis machine tool. The main contents of this paper are as follows: 1. The simulation algorithm of cutting S specimen is designed, and the forward mapping function between the single error of five axis machine tool and the contour error of S specimen is established. The spatial error model of five-axis machine tool is established based on multi-body theory, and the corresponding relationship between the individual error and the profile error of S part is analyzed by Matlab. 2. Deep-learning convolution neural network structure is designed to fit the mapping function between S specimen and error item. Special improvements include transforming S sample 3D point cloud data into three different dimension error maps by stretching and projecting. The three-channel structure is designed for this purpose. The distribution of error data is unstable and accurate, so batch regularization operation is used to control the data distribution. The pruning strategy is realized to optimize the network structure. 3. To realize the experimental scheme of error traceability of five-axis machine tool based on depth learning and S sample, including planning data set training strategy and specification standard; Based on ipython notebook, the test framework of online programming and visual client is established; the service of maintenance laboratory depth learning server and remote landing is built; finally, the feasibility and correctness of the whole scheme are verified based on the Caffe platform.
【學(xué)位授予單位】:電子科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TG659

【參考文獻】

相關(guān)期刊論文 前10條

1 杜麗;鄭從志;邊志遠;趙旭東;王偉;;“S”形精度檢驗試件的簡化重構(gòu)與優(yōu)化研究[J];組合機床與自動化加工技術(shù);2015年04期

2 杜麗;崔浪浪;趙波;譚陽;王偉;;基于S型檢驗試件的數(shù)控機床動態(tài)性能辨識新方法[J];制造技術(shù)與機床;2012年12期

3 丁杰雄;譚陽;崔浪浪;趙波;王偉;;一種五軸機床檢驗試件輪廓誤差的處理與顯示技術(shù)研究[J];組合機床與自動化加工技術(shù);2012年10期

4 郭前建;賀磊;楊建國;;基于投影追蹤回歸的機床熱誤差建模技術(shù)[J];四川大學(xué)學(xué)報(工程科學(xué)版);2012年02期

5 霍彥波;丁杰雄;謝東;杜麗;王偉;;五軸數(shù)控機床轉(zhuǎn)動軸與平動軸聯(lián)動的輪廓誤差仿真分析[J];組合機床與自動化加工技術(shù);2012年03期

6 張毅;楊建國;;基于灰色理論預(yù)處理的神經(jīng)網(wǎng)絡(luò)機床熱誤差建模[J];機械工程學(xué)報;2011年07期

7 郭前建;楊建國;;基于蟻群算法的機床熱誤差建模技術(shù)[J];上海交通大學(xué)學(xué)報;2009年05期

8 王秀山;楊建國;余永昌;鄒彩虹;;雙轉(zhuǎn)臺五軸數(shù)控機床熱誤差建模、檢測及補償實驗研究[J];中國機械工程;2009年04期

9 趙薇;高春;馬躍;吳文江;;通用RTCP算法的研究與設(shè)計[J];小型微型計算機系統(tǒng);2008年05期

10 傅建中,陳子辰;精密機械熱動態(tài)誤差模糊神經(jīng)網(wǎng)絡(luò)建模研究[J];浙江大學(xué)學(xué)報(工學(xué)版);2004年06期

相關(guān)博士學(xué)位論文 前2條

1 何振亞;五軸數(shù)控機床幾何與熱致空間誤差檢測辨識及模型研究[D];浙江大學(xué);2014年

2 粟時平;多軸數(shù)控機床精度建模與誤差補償方法研究[D];中國人民解放軍國防科學(xué)技術(shù)大學(xué);2002年

,

本文編號:2368338

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/2368338.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶7a5e7***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com
精品女同在线一区二区| 日韩欧美综合中文字幕| 好吊色欧美一区二区三区顽频| 日韩精品视频一二三区| 精品少妇人妻av一区二区蜜桃| 麻豆精品在线一区二区三区| 国产麻豆成人精品区在线观看| 国产一区二区三区色噜噜| 欧美精品一区久久精品| 少妇人妻一级片一区二区三区 | 精品推荐国产麻豆剧传媒| 中文字幕乱码免费人妻av| 爽到高潮嗷嗷叫之在现观看| 亚洲中文在线观看小视频| 国产精品国三级国产专不卡| 亚洲一区二区三区中文久久| 老富婆找帅哥按摩抠逼视频| 亚洲熟女熟妇乱色一区| 欧美日韩三区在线观看| 亚洲一级二级三级精品| 国产主播精品福利午夜二区| 欧美日韩国产精品黄片| 国产成人亚洲精品青草天美| 成年人视频日本大香蕉久久| 99久久精品免费精品国产| 午夜福利视频偷拍91| 神马午夜福利免费视频| 99热在线播放免费观看| 粗暴蹂躏中文一区二区三区| 日韩成人动画在线观看| 特黄大片性高水多欧美一级| 欧美午夜一区二区福利视频| 国产欧美日韩不卡在线视频| 精品亚洲一区二区三区w竹菊| 激情内射亚洲一区二区三区| 果冻传媒在线观看免费高清| 东北老熟妇全程露脸被内射| 熟女体下毛荫荫黑森林自拍| 国产精品一区二区不卡中文| 在线亚洲成人中文字幕高清| 国产对白老熟女正在播放|