天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 鑄造論文 >

拉深件成形裂紋的非平穩(wěn)信號處理及模糊識別研究

發(fā)布時間:2018-11-24 12:14
【摘要】:拉深裂紋作為金屬板材成形件的主要失效形式,常在成形件危險區(qū)域出現(xiàn),尤其是其中的早期裂紋,很難憑借傳統(tǒng)的檢測方法進行識別。針對上述所提到的問題,本研究采用聲發(fā)射(AE)信號檢測技術(shù)對金屬成形件的拉深A(yù)E信號進行檢測,再應(yīng)用基于小波閥值-EMD綜合法對裂紋AE信號進行分解降噪和重組,最后利用基于模糊等價關(guān)系的模糊聚類方法對各類裂紋進行模糊識別。主要的研究內(nèi)容見下文:1)以盒形拉深件為本研究的理論模型,對金屬板材成形件的拉深應(yīng)力、應(yīng)變狀態(tài)和拉深過程出現(xiàn)裂紋的成因進行分析,然后結(jié)合金屬板材拉深件畚斗的仿真結(jié)果得到此類拉深件容易出現(xiàn)拉深裂紋的危險區(qū)域;對無損檢測方法中的聲發(fā)射檢測系統(tǒng)和工作原理進行介紹,在結(jié)合了金屬板材拉深過程中裂紋的擴展伴隨著聲發(fā)射信號和聲發(fā)射信號的特點,確定對金屬板材拉深件進行深拉來獲得拉深裂紋,并通過聲發(fā)射檢測系統(tǒng)對整個拉深過程進行監(jiān)測以獲得包含裂紋信號的聲發(fā)射信號。2)結(jié)合上述理論分析,以金屬板材拉深件畚斗為研究對象進行了金屬板材拉深的AE信號采集實驗,大量的采集和保存無裂紋、早起裂紋、擴展裂紋三種裂紋狀態(tài)的AE信號,并對采集的信號和金屬制件畚斗進行對應(yīng)標(biāo)注,以便于后期的數(shù)據(jù)處理。3)對聲發(fā)射信號的降噪方法進行了研究,將其中對聲發(fā)射降噪效果比較好的小波閾值濾波降噪、EMD降噪兩種降噪方法進行分析和比較,并結(jié)合它們的優(yōu)缺點提出了小波閾值-EMD綜合降噪法,采用這種綜合降噪法對金屬板材拉深件的聲發(fā)射信號進行降噪處理,在降噪前首先要采用消失矩為5的Daubechies小波基對AE信號進行三層小波分解操作,然后根據(jù)信號的頻段進行頻帶選取,對選取的頻帶信號采用EMD降噪方法進行降噪,而沒有選取的頻帶信號則采用小波閾值降噪,然后將兩部分降噪過后的信號進行信號重構(gòu)得到純凈的聲發(fā)射信號。4)分析了金屬板材成形裂紋產(chǎn)生的非平穩(wěn)信號的特征,從降噪過后的純凈信號中提取出對應(yīng)的信號參數(shù);對模糊聚類算法進行介紹,選擇基于模糊等價關(guān)系的模糊聚類方法對四類信號進行模糊識別,選取相互獨立的幅度、有效值電壓(RMS)、平均信號電平值(ASL)、能量四個參數(shù)作為識別參數(shù),建立數(shù)據(jù)矩陣,運用MATLAB軟件對金屬板材拉深件畚斗的提取參數(shù)進行數(shù)值模擬分析,實現(xiàn)對無裂紋、早起裂紋和擴展裂紋三種狀態(tài)裂紋的多參數(shù)模糊識別。研究結(jié)果表明:利用聲發(fā)射采集系統(tǒng)采集金屬制件畚斗的聲發(fā)射信號,采用小波閾值-EMD綜合降噪法對拉深信號進行降噪處理和重構(gòu),然后從中提取特征信號作為模糊聚類的參數(shù),實現(xiàn)了對金屬板材拉深件畚斗裂紋狀態(tài)(尤其是早期裂紋)的模糊識別,且識別準(zhǔn)確率較高。
[Abstract]:Drawing cracks, as the main failure forms of sheet metal forming parts, often appear in the dangerous areas of forming parts, especially the early cracks, so it is difficult to identify them by traditional detection methods. In order to solve the problems mentioned above, the acoustic emission (AE) signal detection technique is used to detect the deep drawing AE signal of metal forming parts, and then the cracked AE signal is decomposed and recombined based on wavelet threshold EMD synthesis method. Finally, the fuzzy clustering method based on fuzzy equivalence relation is used to identify all kinds of cracks. The main research contents are as follows: 1) taking the box drawing parts as the theoretical model of this study, the paper analyzes the drawing stress, strain state and the causes of cracks in the drawing process of sheet metal forming parts. Then combining with the simulation results of the metal sheet drawing bucket, the dangerous area where the drawing crack is easy to appear is obtained. This paper introduces the acoustic emission testing system and working principle in the nondestructive testing method. It combines the characteristics of acoustic emission signal and acoustic emission signal in the process of metal sheet drawing. It is determined that deep drawing is carried out to obtain deep drawing crack of metal sheet drawing, and the whole drawing process is monitored by acoustic emission detection system to obtain acoustic emission signal containing crack signal. 2) combined with the above theoretical analysis, Taking the metal plate deep drawing bucket as the research object, the AE signal acquisition experiment of metal plate drawing is carried out. A large number of AE signals are collected and preserved in three kinds of crack states, that is, no crack, early rise crack and propagating crack. At the same time, the signal and metal dustbin are labeled accordingly, so as to facilitate the later data processing. 3) the noise reduction method of acoustic emission signal is studied, and the wavelet threshold filter, which has better effect on acoustic emission noise reduction, is used to reduce the noise. Two methods of EMD noise reduction are analyzed and compared. Combined with their advantages and disadvantages, the wavelet threshold-EMD comprehensive noise reduction method is put forward, which is used to reduce the noise of the acoustic emission signal of the metal sheet drawing parts. Before noise reduction, Daubechies wavelet basis with vanishing moment of 5 is used to decompose AE signal with three-layer wavelet transform, then the frequency band is selected according to the frequency band of the signal, and the selected frequency band signal is de-noised by EMD denoising method. The non-selected band signal is de-noised by wavelet threshold, and then the two parts of the de-noised signal are reconstructed to get the pure acoustic emission signal. 4) the characteristics of the non-stationary signal produced by the metal sheet forming crack are analyzed. The corresponding signal parameters are extracted from the pure signal after noise reduction. This paper introduces the fuzzy clustering algorithm, selects the fuzzy clustering method based on the fuzzy equivalence relation to carry on the fuzzy recognition to the four kinds of signals, selects the mutually independent amplitude, the effective value voltage (RMS), average signal level value (ASL), Four parameters of energy are used as identification parameters, data matrix is established, and the extraction parameters of metal plate deep drawing bucket are numerically simulated and analyzed by using MATLAB software, and the crack free is realized. Multi-parameter fuzzy identification of early crack and propagating crack. The results show that the acoustic emission signal of metal dustbin is collected by acoustic emission acquisition system, and the deep drawing signal is de-noised and reconstructed by wavelet threshold-EMD comprehensive de-noising method. Then the feature signal is extracted as the parameter of fuzzy clustering to realize fuzzy identification of bucket crack state (especially early crack) of metal sheet drawing parts and the accuracy of identification is high.
【學(xué)位授予單位】:江蘇大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TG386.32

【參考文獻】

相關(guān)期刊論文 前10條

1 羅仁澤;蔣鵬;陸存;張耀;;基于小波包能量與模糊C均值聚類的軸承退化狀態(tài)預(yù)測[J];組合機床與自動化加工技術(shù);2016年11期

2 張緒景;雷曉燕;劉慶杰;;基于小波包與改進EMD的輪軌力信號降噪[J];噪聲與振動控制;2016年05期

3 張檣;周西峰;王瑾;郭前崗;;基于改進的EMD超聲信號降噪方法研究[J];南京郵電大學(xué)學(xué)報(自然科學(xué)版);2016年02期

4 林助軍;嚴(yán)志軍;肖敏;朱新河;程東;;基于經(jīng)驗?zāi)J椒纸馀c小波軟閾值的聯(lián)合去噪法[J];青島科技大學(xué)學(xué)報(自然科學(xué)版);2015年04期

5 章欣;馮乃章;王艷;沈毅;;鋼軌裂紋傷損聲發(fā)射源的建模仿真與特征分析[J];聲學(xué)學(xué)報;2015年04期

6 周樂育;崔田灝;何建中;張朝磊;劉雅政;;SPCD深沖板沖壓成形中裂紋的萌生及擴展觀察[J];材料熱處理學(xué)報;2015年06期

7 翁茂榮;李強;曹淼龍;;汽車前地板單動拉延成形工藝分析與數(shù)值模擬[J];鍛壓技術(shù);2015年05期

8 韓暉;寧寧;肖迎春;劉國強;李明;;基于聲發(fā)射的全尺寸飛機靜強度損傷監(jiān)測[J];無損檢測;2015年05期

9 莫亞婧;李秋鋒;何才厚;李帥輝;陳積樂;;Q345鋼拉伸及彎曲損傷裂紋聲發(fā)射監(jiān)測實驗研究[J];南昌航空大學(xué)學(xué)報(自然科學(xué)版);2015年01期

10 婁燕敏;董奇瑋;李子良;劉坤;焦金龍;;3Cr13不銹鋼氣閥試樣斷裂過程的聲發(fā)射特性[J];無損檢測;2015年02期

相關(guān)博士學(xué)位論文 前1條

1 胡曉依;基于非高斯、非平穩(wěn)信號處理的機械故障特征提取方法研究[D];北京交通大學(xué);2009年

相關(guān)碩士學(xué)位論文 前6條

1 饒金根;基于諧波小波和支持向量機的風(fēng)電葉片損傷識別研究[D];蘭州交通大學(xué);2014年

2 孟憲靜;基于模糊模式識別的木材孔洞缺陷識別模型的研究[D];東北林業(yè)大學(xué);2014年

3 吳量;基于非平穩(wěn)性度量的EMD趨勢噪聲分解[D];華中師范大學(xué);2013年

4 鄧宗群;基于改進提升小波的AE信號消噪及在故障診斷中的應(yīng)用研究[D];湖南科技大學(xué);2012年

5 李文斌;基于多小波分析的滾動軸承故障診斷方法研究[D];北京工業(yè)大學(xué);2011年

6 孟維;拉深過程中聲發(fā)射數(shù)據(jù)的回歸分析[D];內(nèi)蒙古工業(yè)大學(xué);2010年

,

本文編號:2353671

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/2353671.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶a8ff6***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com