電渣重熔Mn18Cr18N奧氏體不銹鋼熱變形過程組織演變的研究
[Abstract]:Mn18Cr18N high-nitrogen austenitic stainless steel is widely used in generator ring production because of its excellent corrosion resistance and ductility. Due to the restriction of metallurgical technology, the traditional casting microstructure of the steel is coarse in grain size and serious in defect, and the application of electroslag remelting technology greatly improves the microstructure quality of the cast billet. Although the microstructure defects are greatly reduced, the grain structure is basically composed of coarse columnar crystals. Mn18Cr18N steel is not a phase change steel and can not be optimized by heat treatment. Therefore, grain refinement has become a key technology to improve microstructure and properties. The microstructure state of the blanks used in the ring protection machining is mostly in the split forging state. Due to the numerous working procedures and the complex process during the forging process, the hot deformation behavior of the as-cast structure of the Mn18Cr18N steel remelted by electroslag is studied. It has important practical significance to optimize the production process of protective ring. The main contents of this paper are as follows: firstly, unidirectional thermal compression experiments were carried out for electroslag remelted Mn18Cr18N austenitic stainless steel. The stress-strain curves under different deformation conditions were obtained, and the hot deformation law of the steel was analyzed. The results show that the steel is very sensitive to strain rate and has obvious positive strain rate sensitivity. Secondly, the dynamic recrystallization of Mn18Cr18N austenitic stainless steel under different deformation conditions was studied. The effects of temperature and strain rate on the dynamic recrystallization softening behavior were analyzed and the constitutive equation and kinetic model of the steel were established. The dynamic recrystallization percentage of deformed microstructure was obtained by means of microstructure observation of metallographic microscope (OM). The dynamic recrystallization percentage model and grain size model were established by origin data fitting software. The results show that the dynamic recrystallization grains are mainly formed in the "necklace" pattern from the original grain boundary. With the increase of temperature and the decrease of strain rate, the percentage of dynamic recrystallization increases gradually. Compared with the forged microstructure, the deformation activation energy of as-cast microstructure is higher, but the dynamic recrystallization activation energy is lower, which indicates that the as-cast microstructure is more difficult to produce plastic deformation, but more prone to dynamic recrystallization. Then, the energy dissipation law of the microstructure of Mn18Cr18N austenitic stainless steel under dynamic recrystallization mechanism was analyzed. Based on the dynamic material model, the hot working diagram of the steel was established under different strain. It is found that the hot working properties of the steel can be improved by increasing the strain. The establishment of the hot working diagram is helpful to analyze the influence of the process parameters on the microstructure and to provide the theoretical basis for optimizing the processing technology of the protective ring. Finally, the effects of different temperature, holding time and strain on the static recrystallization of Mn18Cr18N austenitic stainless steel in Gleeble-1500D thermal simulation machine were studied. The results show that the higher the temperature, the longer the holding time and the higher the percentage of static recrystallization.
【學(xué)位授予單位】:太原科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TG142.1
【參考文獻】
相關(guān)期刊論文 前10條
1 李飛;張華煜;何文武;陳慧琴;郭會光;;Mn18Cr18N奧氏體不銹鋼的壓縮拉伸連續(xù)加載變形行為[J];金屬學(xué)報;2016年08期
2 吳雙輝;王輝亭;安春生;武麗娜;霍巖;丁軍鋒;文道維;;護環(huán)用1Mn18Cr18N鋼的組織和性能[J];金屬熱處理;2016年07期
3 曾祥群;劉潤藻;朱榮;湯旭煒;沈漢;;高氮鋼熱加工性能研究[J];工業(yè)加熱;2016年02期
4 孫朝陽;李亞民;祥雨;楊競;;316LN高溫?zé)嶙冃涡袨榕c熱加工圖研究[J];稀有金屬材料與工程;2016年03期
5 朱紅春;姜周華;李花兵;李可斌;;電渣重熔1Mn18Cr18N護環(huán)鋼補縮過程的溫度變化規(guī)律[J];東北大學(xué)學(xué)報(自然科學(xué)版);2015年11期
6 楊曉雅;何岸;謝甘霖;王西濤;;核電用奧氏體不銹鋼的動態(tài)再結(jié)晶行為[J];工程科學(xué)學(xué)報;2015年11期
7 季長濤;范艷華;陳咨偉;安秋沿;;0Cr18Mn18N0.6高氮無鎳奧氏體不銹鋼的變形與再結(jié)晶[J];熱加工工藝;2015年21期
8 湯旭煒;朱榮;李超;劉偉;;電渣重熔工藝對高氮鋼脫硫的影響[J];鋼鐵研究學(xué)報;2015年06期
9 何文武;孫述利;劉建生;郭會光;;Mn18Cr18N護環(huán)鋼靜態(tài)再結(jié)晶組織及模型[J];材料科學(xué)與工藝;2014年06期
10 湯旭煒;朱榮;李超;;電渣重熔高氮鋼的潔凈度研究[J];煉鋼;2014年05期
相關(guān)會議論文 前1條
1 韓學(xué)三;吉世儉;許學(xué)軍;劉莊;;Mn18Cr18N鋼冷變形強化機理研究[A];中國機械工程學(xué)會鍛壓學(xué)會第六屆學(xué)術(shù)年會論文集[C];1995年
相關(guān)博士學(xué)位論文 前2條
1 謝甘霖;AP1000核電主管道316LN奧氏體不銹鋼熱變形過程的組織演變模擬[D];北京科技大學(xué);2015年
2 閆晨;高鉻合金鋼電渣重熔工藝及渣金特性研究[D];東北大學(xué);2015年
相關(guān)碩士學(xué)位論文 前7條
1 張麗舸;316LN靜態(tài)再結(jié)晶行為及其組織演變模擬研究[D];燕山大學(xué);2014年
2 肜鵬;百萬千瓦強度級1Mn18Cr18N護環(huán)制造工藝研究[D];大連理工大學(xué);2012年
3 李春陽;熱加工圖繪制新方法及應(yīng)用研究[D];燕山大學(xué);2012年
4 陳明秋;電渣重熔鋼錠動態(tài)溫度場及微觀組織的研究[D];東北大學(xué);2010年
5 陳明明;316LN不銹鋼鍛造過程晶粒演變規(guī)律實驗與模擬研究[D];太原科技大學(xué);2010年
6 郭銀芳;Mn18Cr18N護環(huán)鋼多火次熱變形微觀組織演變的研究[D];太原科技大學(xué);2009年
7 陸秋敏;電渣重熔工藝中渣金兩相流動、傳熱及凝固的研究[D];東北大學(xué) ;2009年
,本文編號:2333479
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/2333479.html