藥芯焊絲搖動(dòng)電弧窄間隙焊接熔滴過(guò)渡及焊縫成形研究
[Abstract]:In this paper, aiming at the method of rocking arc narrow gap MAG welding, a high speed video acquisition system of welding arc using background light source is constructed, and the droplet transfer characteristics of solid cored wire and flux cored wire in narrow gap welding are observed. The form of welding spatter and the stability of welding arc are analyzed, and the influence of flat-position welding rocking process parameters (rocking frequency, rocking angle and lateral wall residence time) on weld formation and the rocking process parameters in vertical welding are studied. The effect of wire feeding speed and welding speed on weld formation was studied under the condition of wire feeding speed and wire energy. When welding in horizontal position and vertical position, the change characteristics and transition forms of droplet transfer frequency are different. In the process of flux-cored wire welding, the droplet transfer frequency of flux cored wire at the center of the groove is higher than that of the stable arc droplet transfer when the side wall stays. When the rocking frequency is small, the droplet transfer frequency of welding wire at the center of the groove is smaller than that of the stable arc droplet transfer when the side wall stays. However, the flux-cored wire transfer frequency is the same as that of flux-cored wire under the condition of small rocking frequency. The arc with rocking frequency of 1.5Hz and 2.5Hz is more stable when flux-cored wire and solid cored wire are welded in flat position. The main forms of spatter in welding process are jet transfer spatter and fine particle splashing, and there are a few explosive spatter. When the vertical welding frequency is 0.6Hz and 0.8Hz, the arc is stable. The welding spatter is mainly in the form of jet transfer splashing and droplet spatter, and contains a small amount of explosive splashing and short-circuit splashing. The cross section area of flux-cored wire welding slag decreases with the increase of rocking frequency and increases with the increase of side wall residence time and process reserved gap. The change trend of surface bending of flux cored wire welding slag is opposite to that of welding slag cross section area. The depth of the sloping side wall increases with the increase of the rocking frequency and the residence time of the side wall, but the change trend of the bottom penetration is opposite to that of the side wall, and the decrease of the process reserve gap can increase the bottom and side wall penetration. When welding in vertical position, the wire feeding speed increases, which leads to the increase of the penetration depth of the side wall and the bottom of the weld, and the decrease of the bending degree of the weld surface and the surface curvature of the slag. The increase of wire feeding speed and welding speed is beneficial to increase the penetration depth of the side wall and the bottom of the weld under the condition of constant welding line energy.
【學(xué)位授予單位】:江蘇科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TG44
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 景楠;李進(jìn);;窄間隙焊接技術(shù)與經(jīng)濟(jì)特性評(píng)估[J];焊接技術(shù);2016年05期
2 陳和興;易江龍;;海洋工程焊接技術(shù)現(xiàn)狀與分析[J];中國(guó)材料進(jìn)展;2015年12期
3 徐望輝;范成磊;林三寶;楊春利;;擺動(dòng)電弧窄間隙焊接工藝參數(shù)對(duì)焊縫成形的影響[J];焊接;2015年02期
4 韓恩厚;陳建敏;宿彥京;劉敏;;海洋工程結(jié)構(gòu)與船舶的腐蝕防護(hù)——現(xiàn)狀與趨勢(shì)[J];中國(guó)材料進(jìn)展;2014年02期
5 張文明;李偉;柏久陽(yáng);;窄間隙埋弧焊槍設(shè)計(jì)[J];熱加工工藝;2013年05期
6 郭越;;中國(guó)海洋工程裝備產(chǎn)業(yè)發(fā)展的機(jī)遇與展望[J];海洋經(jīng)濟(jì);2012年05期
7 朱杰;王納;曹亮;符平;王加友;;焊接電弧搖動(dòng)定位控制系統(tǒng)研究[J];江蘇科技大學(xué)學(xué)報(bào)(自然科學(xué)版);2012年05期
8 張錦洲;熊禾根;楊雄;;16MnR窄間隙焊接殘余應(yīng)力的數(shù)值模擬[J];長(zhǎng)江大學(xué)學(xué)報(bào)(自然科學(xué)版);2012年05期
9 徐望輝;林三寶;范成磊;楊春利;張崇華;楊繼承;;船用高強(qiáng)鋼雙絲窄間隙GMAW組織與性能研究[J];焊接;2012年02期
10 陳家本;;共創(chuàng)交流平臺(tái) 助推行業(yè)發(fā)展——記中船-伊薩船舶與海洋工程制造高效焊接技術(shù)研討會(huì)[J];金屬加工(熱加工);2011年14期
相關(guān)博士學(xué)位論文 前4條
1 徐望輝;空間多位置擺動(dòng)電弧窄間隙MAG焊熔滴過(guò)渡與焊縫成形研究[D];哈爾濱工業(yè)大學(xué);2015年
2 丁敏;10Ni5CrMoV鋼旋轉(zhuǎn)電弧NG-GMAW穩(wěn)定性與物理冶金研究[D];上海交通大學(xué);2011年
3 郭寧;旋轉(zhuǎn)電弧窄間隙橫向焊接熔池行為與控制研究[D];哈爾濱工業(yè)大學(xué);2009年
4 趙博;窄間隙MAG焊電弧行為研究[D];哈爾濱工業(yè)大學(xué);2009年
相關(guān)碩士學(xué)位論文 前9條
1 張坤;高強(qiáng)度大厚度樁腿板材切割工藝力學(xué)行為研究[D];江蘇科技大學(xué);2015年
2 張鵬;鋼厚板焊接殘余應(yīng)力研究[D];武漢理工大學(xué);2013年
3 王皇;金屬粉芯型藥芯焊絲熔滴過(guò)渡及飛濺的試驗(yàn)研究[D];太原理工大學(xué);2012年
4 左振龍;電弧擺動(dòng)式窄間隙GMAW焊槍設(shè)計(jì)及研究[D];上海交通大學(xué);2012年
5 徐望輝;大厚板雙絲窄間隙GMAW工藝技術(shù)研究[D];哈爾濱工業(yè)大學(xué);2011年
6 常婧;DH40高強(qiáng)鋼大厚板焊接及焊接殘余應(yīng)力有限元分析[D];江蘇科技大學(xué);2011年
7 余剛;窄間隙TIG焊槍設(shè)計(jì)研究[D];上海交通大學(xué);2011年
8 蔡建偉;HSLA鋼中M-A組織的形成動(dòng)力學(xué)及其對(duì)力學(xué)性能的影響[D];燕山大學(xué);2007年
9 梁曉燕;中厚板多道焊焊接過(guò)程中溫度場(chǎng)和應(yīng)力場(chǎng)的三維數(shù)值模擬[D];華中科技大學(xué);2004年
,本文編號(hào):2308492
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/2308492.html