基于絲材電弧增材制造Ti6A14V-xB合金的組織性能及模擬
[Abstract]:Titanium and titanium alloys are widely used in various fields because of their high strength, low density, high temperature resistance, corrosion resistance, non-magnetic and good biocompatibility. However, the traditional forming process of titanium and titanium alloys requires follow-up treatment such as vacuum melting, forging and a large number of cutting, which reduces the material utilization rate and increases the production cost. Manufacturing technology can shorten the process, improve the utilization rate of titanium alloy materials, and optimize the alloy composition, which can improve the mechanical properties of titanium alloy. Based on this, this paper studies the manufacturing technology of titanium alloy with trace boron and wire arc augmentation, and the evolution of rapidly solidified microstructure in the process of titanium alloy wire arc augmentation. Firstly, Ti6Al14V-xB (wt%, x 0, 0.05, 0.1, 0.5) alloys with different boron contents were prepared by high vacuum non-consumptive melting and suction casting. The effects of different trace boron addition on the casting microstructure and mechanical properties of Ti6Al4V-xB were studied. Secondly, Ti6Al4V and Ti6Al4V-0.05B wires were used as raw materials and arc as heat source. The solidification process, microstructure and mechanical properties of arc augmented titanium alloy wire were studied. Finally, the rapid solidification process of arc augmented Ti6Al4V and Ti6Al4V-0.05B alloy wire was simulated by cellular automata-finite element method. The mechanism of solid-liquid transition, initial beta nucleation and growth in different stages of wire arc augmentation is studied. The results are as follows: (1) The addition of trace B affects the initial beta crystal growth of titanium alloy. The enrichment of B in the front of solid-liquid hinders the initial beta-Ti growth and refines the grain effectively. When the boron content exceeds 0.1wt%, the grain size is obviously refined. The tensile strength limit of Ti6Al4V-xB alloy increases monotonously with the increase of boron content, which is the result of fine grain strengthening and precipitation strengthening; the plasticity of Ti6Al4V-0.05B alloy increases by 15%, while the plasticity of Ti6Al4V-0.1B and Ti6Al4V-0.5B alloy decreases by more than 40% because of precipitation brittleness. (2) In the arc augmentation process of Ti6Al4V wire, due to the high heat input of the arc, effective metallurgical bonding is achieved between each deposited area, fusion area and deposited area, without obvious deposited interface and titanium martensite, and the microstructure of each area is stable a + beta lamella. Compared with as-cast Ti6Al4V, the titanium alloy made by arc augmentation has not only fine initial beta grain, but also small interlamellar spacing of alpha+beta. Its tensile strength and elongation are higher than that of as-cast titanium alloy, and the tensile fracture surface is fine dimple-like toughness fracture. (3) The titanium alloy made by arc augmentation of Ti6Al4V-0.05B wire has been fabricated. In the process, finer grains were obtained with a small amount of irregular acicular TiB precipitation. Compared with as-cast Ti6Al4V-0.05B alloy, the grain size was reduced and tended to dendrite morphology. The tensile strength increased by 6.2% and the elongation increased by 28.7%. (4) Simulation of solidification microstructure evolution in arc augmented Ti6Al4V wire The results show that the orientation of the initial beta crystal is disordered and the grain size is small; with the increase of the height of the augmented material, the temperature gradient slows down, the width of the average solid-liquid transition paste region increases, the average grain size of the initial beta crystal increases, and the orientation of the crystal tends to the direction of heat transfer (perpendicular to the direction of the cold substrate); the simulation results and the initial production of the actual augmented material. In addition, the simulation results of Ti6Al4V-0.05B alloy show that the addition of 0.05 wt% boron improves the nucleation rate and growth rate, which makes the initial beta grain show more dendritic growth.
【學(xué)位授予單位】:西安理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TG146.23
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 黃立國(guó);陳玉勇;;硼對(duì)鈦合金成形能力和力學(xué)性能影響的研究進(jìn)展[J];機(jī)械工程材料;2016年06期
2 張璞;侯華;趙宇宏;靳玉春;趙宇輝;眭懷明;;基于CAFE模型的鎳基合金定向凝固過(guò)程顯微組織模擬[J];中國(guó)有色金屬學(xué)報(bào);2016年04期
3 陳君;張清;;模擬海水環(huán)境中電化學(xué)狀態(tài)對(duì)TC4鈦合金腐蝕磨損行為的影響(英文)[J];Transactions of Nonferrous Metals Society of China;2016年04期
4 張小偉;;金屬增材制造技術(shù)在航空發(fā)動(dòng)機(jī)領(lǐng)域的應(yīng)用[J];航空動(dòng)力學(xué)報(bào);2016年01期
5 湯慧萍;王建;逯圣路;楊廣宇;;電子束選區(qū)熔化成形技術(shù)研究進(jìn)展[J];中國(guó)材料進(jìn)展;2015年03期
6 楊健;陳靜;張強(qiáng);;激光近凈成形TC21鈦合金的組織與性能[J];金屬熱處理;2015年03期
7 劉全明;張朝暉;劉世鋒;楊海瑛;;鈦合金在航空航天及武器裝備領(lǐng)域的應(yīng)用與發(fā)展[J];鋼鐵研究學(xué)報(bào);2015年03期
8 王科;;鈦合金制備方法的研究進(jìn)展[J];材料導(dǎo)報(bào);2014年S2期
9 王華明;;高性能大型金屬構(gòu)件激光增材制造:若干材料基礎(chǔ)問(wèn)題[J];航空學(xué)報(bào);2014年10期
10 曾光;韓志宇;梁書(shū)錦;張鵬;陳小林;張平祥;;金屬零件3D打印技術(shù)的應(yīng)用研究[J];中國(guó)材料進(jìn)展;2014年06期
相關(guān)博士學(xué)位論文 前1條
1 黃立國(guó);含硼鈦合金高溫變形及組織性能研究[D];哈爾濱工業(yè)大學(xué);2014年
相關(guān)碩士學(xué)位論文 前8條
1 李帥;定向凝固ZA35合金組織模擬和實(shí)驗(yàn)研究[D];遼寧工程技術(shù)大學(xué);2015年
2 楊雪梅;全域鑄錠宏微觀耦合的數(shù)值模擬研究[D];河北工業(yè)大學(xué);2015年
3 石璐銘;B、Y對(duì)高溫鈦合金組織性能影響的研究[D];哈爾濱工業(yè)大學(xué);2014年
4 宋迎德;鎂合金凝固組織模擬[D];大連理工大學(xué);2012年
5 婁軍;快速凝固鈦合金的組織與性能研究[D];沈陽(yáng)大學(xué);2012年
6 王錦林;Ti6Al4V鈦合金非平衡顯微組織的研究[D];武漢科技大學(xué);2010年
7 閆欣;基于CA-FE法高溫合金鑄件成形質(zhì)量的CAE仿真[D];西北工業(yè)大學(xué);2006年
8 暢春玲;元胞自動(dòng)機(jī)模型應(yīng)用及模糊元胞自動(dòng)機(jī)[D];大連海事大學(xué);2005年
,本文編號(hào):2235237
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/2235237.html