基于數(shù)據(jù)挖掘的冷連軋過(guò)程板形缺陷預(yù)測(cè)與診斷方法研究
[Abstract]:The cold continuous rolling process has the characteristics of multi-working condition, multi-variable, nonlinear, big data and so on. The formation of shape defects is complex, and the method based on mechanism model is difficult to predict and diagnose the shape defects on line. Taking the DSR shape control system of Baosteel 2030mm cold rolling process as the application object, this paper studies the shape prediction and defect identification of cold rolling process under multiple working conditions by using data driven techniques such as multivariate statistical analysis and data mining. In view of the fact that the product defect data of DSR dynamic flatness control system has a small sample under many working conditions and some working conditions, an on-line flatness monitoring method based on support vector machine (SVM) is proposed. Firstly, the principal components obtained by (PCA), are used as the input of support vector machine, and the shape variables are decomposed as the output of support vector machine. Finally, the shape regression prediction model with multiple input and single output is obtained. Then, the coefficients of support vector machine are optimized by Bayesian criterion, and the regression model of support vector machine is updated to overcome the influence of uncertainty information on shape prediction accuracy. The experimental results show that this method can effectively solve the problem of rapid shape modeling under multiple working conditions, and the shape prediction accuracy is high. In view of the characteristics of DSR dynamic flatness control system such as multi-condition and massive data, this paper improves the traditional algorithm of frequent pattern mining, and realizes the frequent pattern mining of shape defect data under multiple working conditions. First, the process variables are reduced by principal component analysis (PCA); then, the threshold of SPE statistics in PCA method is set to select fault data; and then the correlation features of shape defects are mined by improved Apriori algorithm. Finally, the frequent items of each defect are obtained, and the corresponding diagnosis knowledge is used to identify the fault cause. The experimental results show that the diagnostic results of this method are in good agreement with those of experts in the field, and the method has high reliability and has a good prospect of engineering application.
【學(xué)位授予單位】:南京航空航天大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TG335.9;TP311.13
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 楊洪富;賈曉亮;任壽偉;;基于數(shù)據(jù)驅(qū)動(dòng)的航空發(fā)動(dòng)機(jī)故障診斷與預(yù)測(cè)方法綜述[J];航空精密制造技術(shù);2016年05期
2 寧慧;王素紅;崔立剛;郭笑語(yǔ);徐麗;;基于改進(jìn)的FP-tree最大頻繁模式挖掘算法[J];應(yīng)用科技;2016年02期
3 謝永華;張鳴敏;楊樂(lè);張恒德;;基于支持向量機(jī)回歸的城市PM_(2.5)濃度預(yù)測(cè)[J];計(jì)算機(jī)工程與設(shè)計(jì);2015年11期
4 單燕;李玲娟;孫杜靖;;基于主成分分析的并行化數(shù)據(jù)流降維算法研究[J];南京郵電大學(xué)學(xué)報(bào)(自然科學(xué)版);2015年05期
5 王樂(lè);常艷芬;王水;;基于模式增長(zhǎng)的不確定數(shù)據(jù)的頻繁模式挖掘算法[J];計(jì)算機(jī)應(yīng)用;2015年07期
6 唐穎峰;陳世平;;一種面向分布式數(shù)據(jù)流的閉頻繁模式挖掘方法[J];計(jì)算機(jī)應(yīng)用研究;2015年12期
7 王男帥;薛靜鋒;胡昌振;單純;李志強(qiáng);;基于遺傳優(yōu)化支持向量機(jī)的軟件缺陷預(yù)測(cè)模型[J];中國(guó)科技論文;2015年02期
8 韓少鵬;陸寧云;姜斌;;基于不確定信息的系統(tǒng)建模與狀態(tài)預(yù)測(cè)方法[J];華東理工大學(xué)學(xué)報(bào)(自然科學(xué)版);2013年01期
9 黃志堅(jiān);;軋機(jī)軸承與軋輥智能診斷與維護(hù)技術(shù)探討[J];南方金屬;2012年05期
10 李海波;柴天佑;岳恒;;浮選工藝指標(biāo)KPCA-ELM軟測(cè)量模型及應(yīng)用[J];化工學(xué)報(bào);2012年09期
相關(guān)博士學(xué)位論文 前5條
1 黃愛(ài)芹;基于數(shù)據(jù)驅(qū)動(dòng)的調(diào)節(jié)閥故障診斷方法研究[D];山東大學(xué);2015年
2 盧春紅;基于數(shù)據(jù)驅(qū)動(dòng)的故障檢測(cè)與診斷技術(shù)及其應(yīng)用研究[D];江南大學(xué);2015年
3 喬景慧;水泥生料分解過(guò)程智能控制系統(tǒng)的研究[D];東北大學(xué);2012年
4 賀建軍;基于高斯過(guò)程模型的機(jī)器學(xué)習(xí)算法研究及應(yīng)用[D];大連理工大學(xué);2012年
5 張秀玲;冷帶軋機(jī)板形智能識(shí)別與智能控制研究[D];燕山大學(xué);2003年
相關(guān)碩士學(xué)位論文 前9條
1 曹哲;基于神經(jīng)網(wǎng)絡(luò)與案例推理的車載設(shè)備故障診斷研究[D];北京交通大學(xué);2016年
2 楊正永;基于流形學(xué)習(xí)算法的非高斯過(guò)程監(jiān)控方法研究及在化工過(guò)程監(jiān)控中的應(yīng)用[D];華東理工大學(xué);2015年
3 趙青鶴;高鐵信號(hào)系統(tǒng)的系統(tǒng)級(jí)故障診斷方法研究[D];北京交通大學(xué);2014年
4 劉宇航;基于主成分分析的故障監(jiān)測(cè)方法及其應(yīng)用研究[D];華東理工大學(xué);2012年
5 樓洋;基于種群排序和引力分組模型的進(jìn)化算法研究[D];寧波大學(xué);2012年
6 李楠;板形模式識(shí)別與控制的智能方法研究[D];燕山大學(xué);2006年
7 朱學(xué)彪;2800軋機(jī)液壓系統(tǒng)在線監(jiān)測(cè)與故障診斷[D];武漢科技大學(xué);2005年
8 滕召旗;軋機(jī)液壓故障智能診斷系統(tǒng)的研究與開(kāi)發(fā)[D];廣東工業(yè)大學(xué);2002年
9 王霞;基于神經(jīng)網(wǎng)絡(luò)的非線性系統(tǒng)傳感器故障診斷研究[D];西北工業(yè)大學(xué);2002年
,本文編號(hào):2219525
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/2219525.html