曲面件柔性軋制成形過(guò)程數(shù)值模擬及工藝參數(shù)優(yōu)化設(shè)計(jì)
[Abstract]:Flexible rolling forming is a new continuous forming process for curved parts, which combines multi-point adjustment method with rolling technology. Special roll gap distribution and flexible work roll rotation are used to realize the three-dimensional plastic deformation and continuous feed of the plate, so that the three-dimensional curved parts can be formed without die, continuously and efficiently, with low processing cost and flexible forming mode. Because of its wide range of forming advantages, it is easy to meet the individualized needs of curved panel parts in many industries, especially in the fields of aerospace, ship, civil industry and so on. In this paper, the flexible rolling forming process is theoretically analyzed, and the influence of the process parameters on the flexible rolling forming process is investigated by the method of numerical simulation and experimental verification. In order to optimize the flexible rolling forming process, the orthogonal test was used to design the main process parameters. The main contents of this paper are as follows: (1) from the angles of plastic mechanics, geometry and sheet metal deformation, the principle of flexible rolling forming process is analyzed, and the forming characteristics of two typical curved surface parts, convex curved parts and saddle parts, are analyzed. Combined with plastic forming theory, mechanical analysis of forming process and longitudinal bending deformation of sheet metal are carried out. Based on the fact that the upper and lower work rolls can only be bent with small deflection, the roll gap control function is established. (2) the finite element model of flexible rolling forming is established, and the contour of two typical parts is analyzed in three directions: transverse, longitudinal and thickness. The results show that the surface fairing is good, which verifies the validity of the roll gap design and the correctness of the finite element model. Through numerical simulation and analysis, the effects of shape adjustment radius, maximum thinning rate and plate thickness on the transverse and longitudinal curvature of saddle parts are obtained by taking the transverse and longitudinal curvature of forming parts as the research index. (3) on the basis of numerical simulation, the radius of shape adjustment is further adjusted. Three main process parameters, maximum thinning rate and plate thickness, are optimized by orthogonal test. The test data are analyzed by means of range and variance analysis, and the primary and secondary relationships between the process parameters and the forming results are obtained. By comparing the significance and contribution rate of each process parameter to the investigation index, the interaction between the influencing factors of transverse and longitudinal deformation was verified, and the optimal combination of process parameters was obtained. The orthogonal test quantifies the contribution rate of each process parameter to the forming result, which makes the influence degree more direct. The study of the influence of parameters on the shape of forming parts can provide a theoretical basis for shape adjustment and shape control of work rolls. (4) the experimental study on flexible rolling forming is carried out and the simulation results are verified by experiments. This paper analyzes the distribution of the shape of the experimental part and the forming error, and shows that the fairing of the curved surface of the experimental part is good. Through comparative experiments, the curvature and forming error of parts under different technological parameters are studied respectively, and the results are in agreement with the numerical simulation results. It is proved by experiments that the forming error is small and the quality is good under the optimal process parameter combination, which shows that the optimization of orthogonal test is feasible.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TG335
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張昊晗;殷文齊;張忠順;崔坤鵬;;船用鋼板多點(diǎn)成形試驗(yàn)研究[J];一重技術(shù);2014年06期
2 程艷艷;李明哲;邢健;王友;;非規(guī)則曲面件的多夾鉗式柔性拉伸成形研究[J];機(jī)械工程學(xué)報(bào);2014年22期
3 李永豐;付文智;李明哲;;柔性壓輥拉形中壓輥下壓位移量的數(shù)值解析[J];西安交通大學(xué)學(xué)報(bào);2014年01期
4 王蜜;蔡中義;李明哲;王大明;;三維曲面件輥壓成形彎曲變形的計(jì)算及數(shù)值模擬[J];吉林大學(xué)學(xué)報(bào)(工學(xué)版);2014年02期
5 CAI ZhongYi;LI MingZhe;;Principle and theoretical analysis of continuous roll forming for three-dimensional surface parts[J];Science China(Technological Sciences);2013年02期
6 蔡中義;李明哲;;三維曲面連續(xù)輥壓成形的力學(xué)機(jī)制及彎曲變形的計(jì)算[J];機(jī)械工程學(xué)報(bào);2013年02期
7 李明哲;蔡中義;李任君;蘭英武;邱寧佳;;基于彎曲輥軋制的曲面零件連續(xù)成形方法[J];機(jī)械工程學(xué)報(bào);2012年14期
8 陸小武;彭艷;劉宏民;;DC軋機(jī)板厚板形控制策略[J];中南大學(xué)學(xué)報(bào)(自然科學(xué)版);2011年08期
9 蔡中義;李明哲;蘭英武;胡志清;;三維曲面零件連續(xù)成形的形狀控制[J];吉林大學(xué)學(xué)報(bào)(工學(xué)版);2011年04期
10 龔學(xué)鵬;李明哲;胡志清;;連續(xù)多點(diǎn)成形過(guò)程中起皺缺陷的有限元分析[J];機(jī)械工程學(xué)報(bào);2010年22期
相關(guān)會(huì)議論文 前1條
1 雷軍;楊合;;不均勻壓縮下板帶面內(nèi)彎曲成形的上限模型[A];中國(guó)機(jī)械工程學(xué)會(huì)鍛壓學(xué)會(huì)第六屆學(xué)術(shù)年會(huì)論文集[C];1995年
相關(guān)博士學(xué)位論文 前2條
1 王大明;曲面零件柔性軋制成形及其數(shù)值模擬研究[D];吉林大學(xué);2015年
2 胡志清;連續(xù)多點(diǎn)成形方法、裝置及成形實(shí)驗(yàn)研究[D];吉林大學(xué);2008年
相關(guān)碩士學(xué)位論文 前7條
1 胡維學(xué);連續(xù)輥壓成形數(shù)值模擬及起皺缺陷研究[D];吉林大學(xué);2016年
2 高健;曲面柔性軋制成形實(shí)驗(yàn)研究[D];吉林大學(xué);2015年
3 孫欽宇;曲面連續(xù)輥壓成形中的輥縫控制及數(shù)值分析與實(shí)驗(yàn)研究[D];吉林大學(xué);2015年
4 李永豐;柔性軋制成形參數(shù)化模型的建立與修正研究[D];吉林大學(xué);2014年
5 薛鵬飛;三維曲面柔性軋制成形方法及其數(shù)值模擬研究[D];吉林大學(xué);2012年
6 王欣桐;三維曲面柔性軋制過(guò)程的有限元分析[D];吉林大學(xué);2012年
7 張家宇;連續(xù)柔性成形的端部效應(yīng)數(shù)值模擬研究[D];吉林大學(xué);2012年
,本文編號(hào):2200583
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/2200583.html