旋轉(zhuǎn)電弧角焊工藝參數(shù)優(yōu)化及熱應(yīng)力數(shù)值模擬
[Abstract]:Rotating arc angle welding is an important technology in welding field. The welding temperature field and stress-strain field corresponding to different welding parameters are different, which is a big obstacle to the research of welding subsequent deformation control. Therefore, it is necessary to optimize welding parameters by using welding intelligent optimization algorithm, and combine with numerical simulation method to obtain high quality formed weld, and the better process parameters can be used in the study of welding thermodynamics. This saves the test cost, shortens the research and development cycle. In order to optimize the welding process parameters, reduce the number of tests and improve the welding efficiency, the orthogonal test method based on minitab is adopted, and the interaction and influence of the welding parameters are fully considered. The orthogonal test model was established and the corresponding welding test was carried out. Then the angle weld size of each workpiece after welding was measured. The matching relationship and the goodness of fit among the welding process parameters in the orthogonal model were analyzed by the subjective analysis method and the residual analysis method. In order to obtain better welding parameters quickly, a prediction model of welding seam size for rotating arc angle welding was established based on BP (Back Propagation BP (BP) neural network. The mapping relationship between welding parameters and weld size is obtained by training the predicted sample data. The predicted sample can verify the genetic neural network after debugging. Based on BP neural network nonlinear mapping prediction ability and genetic algorithm global optimization ability, the optimization model of rotating arc welding parameters based on genetic neural network is established, and the welding parameters are optimized. In order to accurately simulate the external load of workpiece in welding process, the method of combining numerical simulation and test based on ANSYS is adopted to simulate the external restraint of welding fixture by applying and releasing the constraint of displacement and concentrated force. The supporting force and clamping force of the workpiece are obtained by contact analysis. Finally, according to the designed test platform, three different multi-body coupling models are established to simulate the clamping action between the fixture and the workpiece, and the distribution of von Mises stress and XY direction stress in the upper and lower side plates of the workpiece are analyzed, as well as the forming mechanism of the X-Y direction deformation. Because the simulation results of external restraint model need to be tested and verified, a test platform for measuring the deformation of rotating arc angle welding workpiece has been set up in the laboratory. The angle deformation and bending deformation of the workpiece are obtained by measuring the corresponding measuring points of the lower side plate of the workpiece by using the special gauge for angle welding, and the numerical simulation platform for the thermal stress of the rotary arc angle welding is improved and improved.
【學(xué)位授予單位】:南昌大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TG44
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 梁偉;夏洋;馮偉;村川英一;;焊接變形的高精度測(cè)量方法及預(yù)測(cè)方法研究[J];機(jī)械工程學(xué)報(bào);2016年16期
2 孫加民;朱家勇;夏林印;鄧德安;;電渣焊接頭焊接殘余應(yīng)力與變形的數(shù)值模擬[J];焊接學(xué)報(bào);2016年05期
3 何亞章;王東坡;王穎;張海;;超聲噴丸處理矯正5A06鋁合金焊接結(jié)構(gòu)失穩(wěn)變形(英文)[J];Transactions of Nonferrous Metals Society of China;2016年06期
4 P.M.AJITH;T.M.AFSAL HUSAIN;P.SATHIYA;S.ARAVINDAN;;Multi-objective Optimization of Continuous Drive Friction Welding Process Parameters Using Response Surface Methodology with Intelligent Optimization Algorithm[J];Journal of Iron and Steel Research(International);2015年10期
5 郭玉泉;吳東江;馬廣義;郭東明;;Hastelloy C-276薄板脈沖激光焊接殘余應(yīng)力和變形的數(shù)值模擬和實(shí)驗(yàn)研究(英文)[J];稀有金屬材料與工程;2014年11期
6 毛志偉;羅香彬;石志新;姜銀松;;雙軸機(jī)器人旋轉(zhuǎn)電弧傳感直線焊縫跟蹤仿真研究[J];熱加工工藝;2014年19期
7 毛志偉;羅香彬;周少玲;潘際鑾;李凱瑩;鄧凡靈;;旋轉(zhuǎn)電弧傳感理論數(shù)學(xué)模型研究及展望[J];電焊機(jī);2014年02期
8 田亮;羅宇;王陽(yáng);;基于遺傳算法優(yōu)化BP神經(jīng)網(wǎng)絡(luò)的TIG焊縫尺寸預(yù)測(cè)模型[J];上海交通大學(xué)學(xué)報(bào);2013年11期
9 陶博浩;李紅;宋永倫;李強(qiáng);;電阻點(diǎn)焊冷軋DP600雙相鋼焊接接頭性能的正交試驗(yàn)分析[J];焊接學(xué)報(bào);2013年06期
10 熊然;韓冬;胡春海;韓寶成;;基于正交試驗(yàn)的2219鋁合金電子束焊接工藝參數(shù)優(yōu)化[J];熱加工工藝;2013年09期
相關(guān)博士學(xué)位論文 前2條
1 周廣濤;雙向預(yù)置應(yīng)力控制鋁合金薄板焊接變形與熱裂紋研究[D];哈爾濱工業(yè)大學(xué);2009年
2 路冬;航空整體結(jié)構(gòu)件加工變形預(yù)測(cè)及裝夾布局優(yōu)化[D];山東大學(xué);2007年
相關(guān)碩士學(xué)位論文 前10條
1 王琳;不同約束下機(jī)車(chē)變壓器箱型結(jié)構(gòu)件焊接數(shù)值模擬研究[D];中南林業(yè)科技大學(xué);2014年
2 賴(lài)明建;機(jī)車(chē)變壓器箱型結(jié)構(gòu)件的焊接應(yīng)力與變形數(shù)值模擬[D];中南林業(yè)科技大學(xué);2013年
3 歐陽(yáng)自鵬;鋁合金T型接頭雙激光束雙側(cè)同步焊接穩(wěn)定性研究[D];南京航空航天大學(xué);2012年
4 蘇陽(yáng);薄板鋁合金T型接頭雙激光束雙側(cè)焊接應(yīng)力和變形的有限元分析[D];南京航空航天大學(xué);2012年
5 德亞莎;T型接頭焊接溫度場(chǎng)與應(yīng)力場(chǎng)的數(shù)值仿真[D];內(nèi)蒙古工業(yè)大學(xué);2010年
6 梅]/璽;窄間隙高速旋轉(zhuǎn)電弧焊接工藝的研究[D];上海交通大學(xué);2010年
7 張亞奇;旋轉(zhuǎn)電弧窄間隙橫向MAG焊工藝的研究[D];哈爾濱工業(yè)大學(xué);2008年
8 趙耀邦;雙向預(yù)置應(yīng)力控制焊接變形及防止熱裂紋研究[D];哈爾濱工業(yè)大學(xué);2007年
9 黃暉;基于數(shù)值模擬的旋轉(zhuǎn)電弧焊縫成形工藝參數(shù)優(yōu)化[D];南昌大學(xué);2007年
10 王長(zhǎng)利;焊接溫度場(chǎng)和應(yīng)力場(chǎng)的數(shù)值模擬[D];沈陽(yáng)工業(yè)大學(xué);2005年
,本文編號(hào):2177160
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/2177160.html