鋼中氧化物與溶質(zhì)原子的相互作用及其對鐵素體形成的影響
[Abstract]:Nonmetallic inclusions have long been considered as harmful impurities in steel. However, solute atoms such as Mn, B, C in steel interact with oxide inclusions such as Ti2O3, ZrO2 and Al2O3, forming various defective oxides and some defective oxides through different ways such as substitution, gap and chemical reaction. The formation energies of various defective oxides are obtained by first-principles calculation. The mechanism of interaction between solute atoms and oxides is revealed. The formation mechanism of ferrite and its influence on strength and toughness are discussed. The interaction of three solute atoms Mn, B and C in steel with three oxides Ti2O3, ZrO2 and Al2O3 was studied. The effect of ferrite formation was observed by metallographic microscope, and the content of elements around oxides was quantitatively analyzed by electron probe microanalysis (EPMA). The properties of energy, magnetism and density of states of the related substances are calculated by the principle of property, so as to achieve the purpose of combining experiment with theoretical calculation and verifying each other. The main conclusions are as follows: (1) First-principles calculations show that Ti2O3 is a cationic vacancy oxide, Zr O2 is an anionic vacancy oxide, and Al2O3 is not easy to form a vacancy oxide. The results show that Mn ions can enter the vacancies of Ti2O3 and ZrO2 as doping atoms, and the Mn-depleted regions are formed around the two oxides. The structure analysis shows that the radius of Mn ions and Zr ions is similar, which makes Mn ions easily doped into ZrO2, and the crystal structure is more stable. As manganese is an austenitic enlarged element, the existence of Mn-poor zone can reduce the resistance of ferrite formation and promote the formation of ferrite. (3) The first-principles calculation results show that the formation energy of boron and oxide doping is positive. Boron does not occur when the boron segregated at the austenitic grain boundary interacts with oxide particles (Ti2O3, ZrO2 and Al2O3). Boron is an austenitic stabilizing element. The presence of boron inhibits the formation of ferrite and the formation of boron oxide will not inhibit the formation of ferrite. (4) Carbon content in austenite is higher than that in ferrite. First-principles calculations show that for steel containing only carbon, when carbon interacts with oxide particles (Ti2O3, ZrO2 and Al2O3), carbon does not enter into oxide particles, but reacts with excess oxygen in cationic vacancy Ti2O3 to form carbon. (5) The stability, electrical and magnetic properties of Ti, Zr, Al oxides (MxOy) and MnMx-1Oy doped oxides (MnMx-1Oy) were analyzed by first-principles calculation data. The results show that Ti2O3 has more cations. The formation energy of vacancy and Ti_3MnO_6 is the lowest. The density of States indicates that Ti_2O_3 has certain conductivity, while ZrO_2 and Al_2O_3 are insulators. The chemical environment of Mn in Mn-doped oxides changes, resulting in the asymmetry of the density of states of the doped oxides. Therefore, the doped oxides have magnetic moments. (6) Based on the above theoretical study, the Zr-Ti deoxidization method was used to develop high strength. Welded structural steels. The results show that the formation of fine dispersed Zr-Ti composite oxides in steels provides nucleation particles for the precipitation of MnS and causes spheroidization of MnS. The microstructure and mechanical properties of the steels are uniform, fine and dispersed. Compared with traditional Al deoxidation, the strength, ductility and low temperature toughness are improved, especially the mechanical properties. The results show that the first-principles calculation has a good theoretical guidance for the development of high-performance steel materials, especially for the formulation of composition systems. Based on the above studies, the structure of solute atoms and oxides can be calculated and optimized from the perspective of quantum mechanics. The interaction mechanism of two solute atoms with oxides in steel is proposed: solute atoms doping to form solute depleted zone and solute atoms reacting with oxides to reduce solute atoms content. The interaction with oxides and their effects on phase transition provide research ideas, means and methods.
【學位授予單位】:武漢科技大學
【學位級別】:博士
【學位授予年份】:2016
【分類號】:TG142.1
【相似文獻】
相關(guān)期刊論文 前10條
1 ;攀鋼在國際上率先實現(xiàn)氧化物夾雜快速分析[J];酒鋼科技;2006年01期
2 徐華良;;鑄坯氧化物夾雜探討[J];江蘇冶金;2006年04期
3 史美倫;段貴生;;氧化物冶金技術(shù)應(yīng)用及進展[J];河南冶金;2010年05期
4 陳名浩,沈汝美;差熱抽取測定鋼中氧化物夾雜的新方法[J];鋼鐵研究學報;1998年04期
5 李新明,鄭少波,鄭慶,朱立新;鋼的氧化物冶金技術(shù)[J];上海金屬;2005年05期
6 薛正良;齊江華;金焱;周國凡;;超低氧條件下鋼液脫氧與氧化物夾雜尺寸[J];武漢科技大學學報(自然科學版);2006年06期
7 汪國才;包燕平;吳宗雙;;脫氧工藝對車輪鋼氧化物夾雜控制的影響[J];煉鋼;2010年01期
8 王光迪;于春芬;;電爐軸承鋼中的氧化物夾雜[J];特殊鋼;1983年06期
9 徐金城,亞·羅·帕英;保溫時間對鋼中氧化物夾雜的數(shù)量及尺寸的影響[J];甘肅工業(yè)大學學報;1988年01期
10 沈汝美;鋼中氧化物夾雜分析的誤差來源及結(jié)果的可靠性[J];分析化學;1992年05期
相關(guān)會議論文 前5條
1 楊健;祝凱;王睿之;王國棟;沈建國;;寶鋼利用強脫氧劑的氧化物冶金工藝開發(fā)[A];第七屆(2009)中國鋼鐵年會論文集(上)[C];2009年
2 于春梅;繆新德;杜建峰;石超民;成國光;;軸承鋼不變形D類氧化物夾雜的形成與控制工藝[A];2007中國鋼鐵年會論文集[C];2007年
3 朱立光;;氧化物冶金技術(shù)及發(fā)展[A];2012河北省煉鋼連鑄生產(chǎn)技術(shù)與學術(shù)交流會論文集[C];2012年
4 郭俊波;王麗君;劉延強;胡曉軍;張國華;周國治;;高鐵彈條鋼氧化物夾雜形成的熱力學分析[A];2012年全國冶金物理化學學術(shù)會議專輯(上冊)[C];2012年
5 張博;王福明;李長榮;;彈簧鋼中氧化物夾雜塑性化控制的熱力學分析[A];2010年全國冶金物理化學學術(shù)會議專輯(上冊)[C];2010年
相關(guān)重要報紙文章 前5條
1 張小軍;攀鋼率先實現(xiàn)鋼中氧化物夾雜快速分析[N];世界金屬導(dǎo)報;2008年
2 肖英龍;鋼中氧化物最新分析技術(shù)的開發(fā)[N];世界金屬導(dǎo)報;2003年
3 老唐 本平;鋼中氧化物夾雜分析方法躋身國內(nèi)外技術(shù)前沿[N];世界金屬導(dǎo)報;2006年
4 老唐 本平 記者 周軍 通訊員 龍海;攀鋼鋼研院成功開發(fā)檢測儀器新功能[N];中國冶金報;2006年
5 唐復(fù)平 李鎮(zhèn) 王曉峰 費鵬 林洋 張越 辛國強;反應(yīng)誘發(fā)微小異相凈化鋼水技術(shù)開發(fā)[N];世界金屬導(dǎo)報;2011年
相關(guān)博士學位論文 前2條
1 馬江華;Ti-Mg/Ti-Zr脫氧體系氧化物冶金機理研究[D];東北大學;2013年
2 李鈺;鋼中氧化物與溶質(zhì)原子的相互作用及其對鐵素體形成的影響[D];武漢科技大學;2016年
,本文編號:2176980
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/2176980.html