鋁銅攪拌摩擦焊搭接接頭的組織性能及金屬遷移行為研究
[Abstract]:1060 aluminum alloy and T2 copper are widely used in the industrial field because of their good physical and mechanical properties. The connection of aluminum and copper dissimilar metals is also one of the hot research topics at home and abroad. Friction stir welding (FSW), as a solid metal bonding method, is often used to connect non-ferrous metals such as aluminum, magnesium and copper. The friction stir welding process of aluminum and copper dissimilar metals is still in the experimental stage, and there are few reports on the metal transfer behavior in the aluminum copper dissimilar metal lap joints. The study and innovation of aluminum copper friction stir welding lap welding technology is of fundamental significance for the application of 1060 aluminum alloy and T2 copper, and the study of metal flow behavior of joints is of guiding significance to improve the joint properties. In this paper, friction stir welding (FSW) is used to test 1060 aluminum alloy plate with thickness 6mm and T2 copper plate with 2mm thickness. The second welding is carried out on the basis of Al-Cu double layer joint to form the Cu-Al-Cu three-layer joint. The second lap weld is called the second weld. The microstructure, mechanical properties and metal flow behavior of Al-Cu lap joints were studied by changing the welding process parameters, lap material combinations and the length of agitated needles. The results show that the shear strength of the weld can reach 96.5mm of the aluminum base metal and 43.4 of the copper base metal under the rotating rate of the stirring head n = 800rpm, and the welding speed of v=90mm/min. The weld seam with good surface forming is obtained when the weld surface is formed at 80mm / min. The shear strength of the weld is 96.5mm / min of the aluminum base metal, and that of the copper base metal is 43.4mm / min. The intermetallic compounds CuAl2 and Cu9Al4were formed by eutectic reaction in the weld. In the copper-aluminum-copper three-layer joint, the area of high hardness microstructure in the joint was enlarged by secondary welding, and the peak hardness was increased. The macroscopic defect of the second weld was more than that of the first weld, and the shear strength was generally lower than that of the first weld. When the material thickness is constant, the longer the stirring needle is, the worse the weld formability and joint strength are. The metal flow behavior in the cross section, longitudinal section, shoulder friction plane and aluminum copper interface plane of the lap joint specimen is analyzed. It is found that the plastic metal migration in the weld thickness direction is divided into three regions: the horizontal circular movement of the metal in the axial shoulder disturbance zone. In turbulent region, the convection movement of metal in vertical direction and the elliptical circulation of metal in agitated zone occur. In the axial shoulder friction plane, the plastic metal moves along the radial direction at the forward side on the one hand, and to the welding direction on the other hand by the shaft shoulder. In the interface plane of aluminum and copper, a large number of aluminum and copper migrated to form mixed structure, and the mixed structure moved in a short distance. Secondary welding reduces the mixed microstructure in turbulent zone of weld section, reduces the radial migration distance of planar metal at the interface between aluminum and copper, and increases the amount of granular copper migrating to the base metal. In the weld section, the longer the stirring needle is, the smaller the downward migration distance of the upper metal is. In the friction plane of weld shaft shoulder, the longer the stirring needle, the longer the distance of metal moving along the radial direction. In the plane of Al-Cu interface, the longer the stirring needle is, the worse the metal fluidity is, and the smaller and more uneven the distance along the radial migration is.
【學(xué)位授予單位】:江蘇科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TG453.9
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 高恩志;尹治利;劉冰洋;;基于計算流體力學(xué)的攪拌摩擦焊數(shù)值模擬[J];沈陽航空航天大學(xué)學(xué)報;2016年06期
2 王衛(wèi)兵;欒國紅;張坤;趙華夏;;攪拌摩擦焊塑性金屬流動基本模型[J];焊接學(xué)報;2016年12期
3 趙藝達(dá);柯黎明;劉奮成;毛育青;;攪拌針錐度和螺紋頭數(shù)對厚板鋁合金FSW焊縫金屬遷移的影響[J];焊接學(xué)報;2016年10期
4 王楠;高中華;王軍;;1060鋁合金攪拌摩擦焊焊縫金屬流動機理[J];電焊機;2016年06期
5 鄭森;程東海;陳益平;胡德安;;鋁/銅電子束焊接頭的顯微組織與力學(xué)性能[J];中國有色金屬學(xué)報;2016年05期
6 高福洋;郁炎;蔣鵬;劉志穎;晏陽陽;郭宇凡;;鋁鋼異種金屬攪拌摩擦焊搭接接頭組織與性能研究[J];兵器材料科學(xué)與工程;2016年02期
7 彭澤軍;張德;彭昌永;;復(fù)雜薄壁T2純銅管板件的焊接技術(shù)[J];焊接技術(shù);2015年12期
8 吳憲吉;田娟娟;張科;操齊高;;Ti/Al異種金屬焊接研究進展[J];焊接技術(shù);2015年10期
9 陳高強;史清宇;;攪拌摩擦焊中材料流動行為數(shù)值模擬的研究進展[J];機械工程學(xué)報;2015年22期
10 陳玉華;謝吉林;戈軍委;柯黎明;;工藝參數(shù)對Ti/Al異種金屬攪拌摩擦焊接頭抗拉強度的影響[J];熱加工工藝;2015年03期
相關(guān)碩士學(xué)位論文 前9條
1 廖美玲;軸肩形貌對攪拌摩擦焊縫金屬塑性流動及組織性能的影響[D];南昌航空大學(xué);2015年
2 盧阿麗;基于標(biāo)記插入技術(shù)的攪拌摩擦焊流場的三維不對稱性研究[D];江蘇科技大學(xué);2014年
3 吳小偉;鋁—銅異種金屬材料攪拌摩擦焊搭接研究[D];南京航空航天大學(xué);2013年
4 李夏威;鋁—銅異種金屬攪拌摩擦焊技術(shù)的研究[D];華南理工大學(xué);2012年
5 王成國;鋁/銅異種材料攪拌摩擦焊接頭耐腐蝕性能研究[D];南京航空航天大學(xué);2012年
6 吳鴻燕;材料性能對鋁合金攪拌摩擦焊焊縫塑性金屬流動行為的影響[D];南昌航空大學(xué);2011年
7 王曉東;攪拌摩擦焊焊縫塑性金屬在焊縫厚度方向的遷移行為研究[D];南昌航空大學(xué);2009年
8 王鑫;7A52鋁合金攪拌摩擦焊實驗研究及流動仿真[D];清華大學(xué);2009年
9 穆耀釗;異種金屬攪拌摩擦焊接過程有限元分析[D];西北工業(yè)大學(xué);2006年
,本文編號:2151224
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/2151224.html