復(fù)雜型線銑刀數(shù)字化設(shè)計(jì)及銑削力預(yù)測(cè)研究
本文選題:復(fù)雜型線銑刀 + 有限元仿真。 參考:《山東大學(xué)》2016年博士論文
【摘要】:汽輪機(jī)葉片及轉(zhuǎn)子高速運(yùn)行在高溫度、高壓力的環(huán)境下,零件不但承受靜壓力的影響,還承受熱沖擊、機(jī)械沖擊等動(dòng)態(tài)載荷,這一方面要求核心零部件材料有著良好的力學(xué)性能,同時(shí)需要零部件有良好的加工精度、配合精度。因此,整體式復(fù)雜型線刀具已廣泛應(yīng)用于核電機(jī)組核心部件的生產(chǎn)。根據(jù)刀具市場(chǎng)調(diào)查,目前國(guó)內(nèi)應(yīng)用在核心加工工藝的復(fù)雜型線刀具,尤其是硬質(zhì)合金精加工刀具,基本依賴進(jìn)口。除此之外以轉(zhuǎn)子輪槽為代表的高溫零部件加工,其復(fù)雜型線刀具的設(shè)計(jì)方法還是傳統(tǒng)的試切法,這種方法存在制造周期長(zhǎng)、制造成本高的缺陷,迫切需要借助一些新的數(shù)字化技術(shù)來(lái)指導(dǎo)優(yōu)化其設(shè)計(jì)。本文依托國(guó)家“高檔數(shù)控機(jī)床與基礎(chǔ)制造裝備”科技重大專項(xiàng)“汽輪機(jī)和燃?xì)廨啓C(jī)葉片及轉(zhuǎn)子輪槽加工系列化刀具應(yīng)用示范(2013ZX04009-022)”,對(duì)整體式復(fù)雜型線銑刀的設(shè)計(jì)方法進(jìn)行了系統(tǒng)的研究。本文分析了傳統(tǒng)復(fù)雜型線銑刀的設(shè)計(jì)思路及其優(yōu)缺點(diǎn);趫A錐銑刀實(shí)際應(yīng)用中的失效狀態(tài),確立了分層-定制式的設(shè)計(jì)理念。在此基礎(chǔ)上,提出微元法為基礎(chǔ)的復(fù)雜型線銑刀數(shù)字化設(shè)計(jì)方法;谖⒃ǖ膹(fù)雜型線銑刀簡(jiǎn)化過(guò)程中,在銑削切屑結(jié)構(gòu)計(jì)算模型的基礎(chǔ)上定義了最大等切削厚度模型,將三維銑削過(guò)程離散為二維正交切削模型。并通過(guò)工藝參數(shù)轉(zhuǎn)化模型,將復(fù)雜型線銑刀的銑削工藝轉(zhuǎn)化為每個(gè)微元段的二維正交切削工藝參數(shù)。在此過(guò)程中,本文分析了復(fù)雜型線銑刀的幾何結(jié)構(gòu)及運(yùn)動(dòng)狀態(tài),基于常螺旋線理論推導(dǎo)建立了適用于復(fù)雜型線銑刀的圓錐螺旋線方程及復(fù)雜型線銑刀徑向角度、法向角度換算模型。通過(guò)微元法,將復(fù)雜型線銑刀的刃口設(shè)計(jì)轉(zhuǎn)化為簡(jiǎn)單二維正交切削刀具刃口結(jié)構(gòu)的設(shè)計(jì)。在此基礎(chǔ)上,本文分析了刀具失效形式,確立了刀具刃口幾何結(jié)構(gòu)設(shè)計(jì)過(guò)程的最主要參考指標(biāo):刀具抗破損能力。根據(jù)不同加工過(guò)程的加工要求,定義粗加工及半精加工銑刀刃口設(shè)計(jì)準(zhǔn)則為最小刀尖應(yīng)力和最低切削溫度;精加工銑刀刃口設(shè)計(jì)準(zhǔn)則為最小切削變形比和最小刀尖應(yīng)力。引入權(quán)重系數(shù)λ將多指標(biāo)約束問(wèn)題轉(zhuǎn)化為基于響應(yīng)曲面方程的數(shù)學(xué)模型。引入安全系數(shù)K,將刀具材料的抗彎強(qiáng)度衍化為用于評(píng)定設(shè)計(jì)參數(shù)合理性的強(qiáng)度臨界值。針對(duì)傳統(tǒng)切法設(shè)計(jì)刀具成本高及設(shè)計(jì)周期長(zhǎng)的缺陷,本文提出基于有限元仿真建立基礎(chǔ)數(shù)據(jù)庫(kù)的方法,以期降低設(shè)計(jì)成本、縮短設(shè)計(jì)周期。其中,在刃口設(shè)計(jì)過(guò)程中的響應(yīng)曲面方程充分表達(dá)了數(shù)據(jù)量極大的有限元仿真結(jié)果。為保證有限元仿真對(duì)刀具設(shè)計(jì)結(jié)果的不利影響,本文對(duì)如何建立精確的有限元仿真模型進(jìn)行了充分詳細(xì)的研究。其中,分析了材料熱物理屬性、動(dòng)態(tài)力學(xué)性能以及摩擦模型的精確建模方法,并把正交切削實(shí)驗(yàn)與有限元仿真結(jié)果的主切削力及吃刀抗力進(jìn)行對(duì)比,驗(yàn)證有限元仿真的精度。在精確的有限元仿真模型的基礎(chǔ)上,建立了有限元仿真結(jié)果(如刀尖應(yīng)力S、刀尖溫度T、切削變形比ξ、切削力Force X和Force Y)關(guān)于參數(shù)變量(如切削速度v、切削深度ap、前角γ、刃口半徑r)的函數(shù)表達(dá),進(jìn)而實(shí)現(xiàn)有限元仿真結(jié)果的數(shù)據(jù)庫(kù)管理及在刀具設(shè)計(jì)過(guò)程中的調(diào)用。為了對(duì)設(shè)計(jì)結(jié)果進(jìn)行性能評(píng)價(jià),本文基于復(fù)雜型線銑刀的幾何特征及運(yùn)動(dòng)狀態(tài)分析,建立了復(fù)雜型線銑刀的切削刃動(dòng)態(tài)接觸模型及整體銑削力預(yù)測(cè)模型。在建模過(guò)程中,定義了復(fù)雜型線銑刀工作過(guò)程中的四個(gè)時(shí)間節(jié)點(diǎn):τn、τl、 τs及τe,用于判定復(fù)雜型線銑刀的切削刃線及微元切削刃的工作狀態(tài),在此基礎(chǔ)上,建立了復(fù)雜型線銑刀的切削刃動(dòng)態(tài)接觸模型,同時(shí)提出了微元切削刃單位切削力的二步分解轉(zhuǎn)化模型?紤]螺旋角β及名義型線傾角ω對(duì)單位切削力空間分解的影響,建立了微元切削刃單位切削力空間分解轉(zhuǎn)化模型;考慮螺旋線導(dǎo)致的相位角對(duì)不同微元切削刃坐標(biāo)系的影響,建立了微元切削刃單位切削力時(shí)間域分解轉(zhuǎn)化模型。通過(guò)切削力沿切削刃線在同一方向的可疊加性,建立了整體銑削力集成模型,實(shí)現(xiàn)了工作坐標(biāo)系下的銑削力預(yù)測(cè)。最后通過(guò)整體銑削實(shí)驗(yàn),對(duì)整體力預(yù)測(cè)模型的精度進(jìn)行驗(yàn)證,結(jié)果表明,整體銑削力預(yù)測(cè)模型可以精確的預(yù)測(cè)銑削力的頻率和幅值,為后續(xù)的刀具性能評(píng)價(jià)奠定了基礎(chǔ)。刀具設(shè)計(jì)的最終目的是投入生產(chǎn)并使用,因此需要進(jìn)行刀具可制造性檢驗(yàn)。本文針對(duì)刀具的三維建模及刃磨工藝進(jìn)行了刀具可制造性檢驗(yàn)研究。為實(shí)現(xiàn)復(fù)雜型線銑刀三維建模,首先基于空間幾何的相關(guān)理論,建立了復(fù)雜型線銑刀刀尖幾何、容屑槽、齒背的徑向截形數(shù)學(xué)模型。并基于Pro/E實(shí)現(xiàn)了復(fù)雜型線銑刀的精確建模。在此基礎(chǔ)上,利用NUMROTO完成了復(fù)雜型線銑刀的刃磨工藝制定,實(shí)現(xiàn)了復(fù)雜型線銑刀可制造性檢驗(yàn)。為實(shí)現(xiàn)復(fù)雜型線銑刀數(shù)字化設(shè)計(jì)方法的廣泛應(yīng)用以及高效快捷的刀具設(shè)計(jì),本文以上述復(fù)雜型線銑刀數(shù)字化設(shè)計(jì)及性能評(píng)價(jià)方法為依據(jù),基于Visual C# 3.0開(kāi)發(fā)了復(fù)雜型線銑刀數(shù)字化設(shè)計(jì)平臺(tái),基于Mysql workbench 6.0搭建了復(fù)雜型線銑刀數(shù)字化設(shè)計(jì)平臺(tái)支撐數(shù)據(jù)庫(kù)。并借助復(fù)雜型線銑刀數(shù)字化設(shè)計(jì)平臺(tái)完成三把復(fù)雜型線銑刀的設(shè)計(jì)方案,應(yīng)用于600 MW汽輪機(jī)轉(zhuǎn)子輪槽加工過(guò)程中三個(gè)加工工藝過(guò)程。在實(shí)際生產(chǎn)中對(duì)設(shè)計(jì)的三把刀具進(jìn)行應(yīng)用,并與進(jìn)口型號(hào)刀具進(jìn)行壽命對(duì)比。結(jié)果顯示,三把刀的刀具壽命均超過(guò)進(jìn)口刀具。此結(jié)果充分證明了基于微元法的復(fù)雜型線銑刀數(shù)字化設(shè)計(jì)方法的可靠性及可推廣性。
[Abstract]:Turbine blade and rotor speed in high temperature and high pressure environment, parts not only withstand the effects of static pressure, also bearing thermal shock, mechanical shock and dynamic load, the demand for the core components of materials have good mechanical properties, also need to have spare parts processing precision, good fitting accuracy. Therefore, overall type of complex line tool has been widely used in the production of core components of nuclear power units. According to the market survey tool, the complex line in the core domestic application processing tool, especially hard alloy finishing tool, the basic dependence on imports. In addition to the rotor slot as the representative of the high temperature parts processing, the complex line the tool design method and the traditional trial cutting method, this method has the defects of long manufacturing cycle, high manufacturing cost, the urgent need for the use of some new digital technology to guide. The design. Based on the major national high-end CNC machine tools and basic manufacturing equipment science and technology projects of steam turbine and gas turbine blades and rotor wheel groove machining tool series application demonstration (2013ZX04009-022) ", on the whole complex profile milling cutter design method was studied. This paper analyzes the design idea of the traditional complex line cutter and its advantages and disadvantages. The actual application state of failure cone cutter based on the establishment of a layered design philosophy - customized. On this basis, the digital design method of complex profile milling cutter is proposed based on infinitesimal method. The process of complex line element method based on the milling cutter is simplified, the chip structure calculation the model is defined on the model of the maximum cutting thickness, the 3D milling process for discrete 2D orthogonal cutting model. And through the process parameters of transformation model, the complex line Milling cutter into 2D orthogonal cutting process parameters of each micro segment. In this process, this paper analyzes the geometric structure and motion state of complex line cutter, conical spiral equation and complex line cutter radial angle often helix theory is developed based on the complex profile milling cutter, normal angle conversion model. By differential method, the complex profile milling cutter blade design into the design of simple 2D orthogonal cutting tool edge structure. On this basis, this paper analyzes the failure mode of this cutter, established the main reference index for the geometry design process of cutting edge: the ability of anti damage. According to the different machining tool the machining process requirements, the definition of rough machining and semi finishing milling cutter blade design criterion for the minimum tip stress and minimum cutting temperature; finishing cutter blade design criterion for the minimum cut The cutting deformation ratio and minimum stress. The weight coefficient is introduced to lambda multiple constraints problem into a mathematical model based on response surface equation. The introduction of safety coefficient K, the derived tool material bending strength was used to evaluate the rationality of the design parameters of critical strength. For the shortcomings of the traditional method of cutting tool design and high cost and design cycle the method proposed in this paper the basic database is established based on finite element simulation, in order to reduce the design cost and shorten the design cycle. The design of response surface equations in the process of the full expression of the great amount of data of the finite element simulation results on the cutting edge. In order to ensure the adverse effects of the finite element simulation of tool design, finite element this article on how to establish an accurate simulation model is studied in detail. The full analysis, thermal physical properties of material, dynamic mechanical properties and friction model precise construction The method and the orthogonal cutting experiment and finite element simulation results of the main cutting force and cutting force were compared to verify the finite element simulation precision. Based on finite element simulation model of precise, established the finite element simulation results (such as the stress of S, the temperature of T, the cutting deformation ratio zeta. Force X and Force Y cutting force) on the variables (such as cutting speed V cutting depth AP, the rake angle, edge radius R) function expression, database management and realize the finite element simulation results and call in tool design process. In order to evaluate the performance of the design results, the geometric analysis characteristic and motion of complex line cutter based on the cutting edge of the dynamic contact model and the whole complex profile milling cutter milling force prediction model is established. In the process of modeling, the definition of four time node complex profile milling cutter in the working process: n tau, Tau L, s and E, is used to determine the line cutting edge complex profile milling cutter and micro cutting edge work status, on this basis, a cutting edge of the dynamic contact model of complex line cutter, decomposition transformation model and put forward the micro cutting edge cutting of the two step. Considering the effects of spiral angle the name and type of line angle Omega unit cutting force space decomposition, a micro cutting edge cutting space decomposition model; considering the influence of phase spiral lead angle on the cutting edge of different element coordinate system, established a unit element cutting edge cutting force in time domain decomposition by cutting force along the cutting model. The edge line in the same direction of stacking, establish the overall integration model of milling force, the milling force work coordinates prediction. Finally through the whole milling experiments, to verify the accuracy of the overall force prediction model, The results show that the model can predict the frequency and amplitude of milling force prediction precision of the whole milling force, laid the foundation for the performance evaluation tool. The final purpose of subsequent tool design is put into production and use, so it is necessary for tool manufacturing test. The 3D modeling and edge grinding process for tool manufacturing research test tool can be carried out. In order to realize the 3D modeling of complex profile milling cutter, based on the theory of space geometry, a complex profile milling cutter tip geometry, groove, the tooth surface radial cross-section. The mathematical model of Pro/ and E to realize the accurate modeling of complex profile milling cutter based on. On this basis, the use of NUMROTO the complex line cutter edge set grinding process, the complex profile milling cutter manufacturing test. For wide application of complex profile milling cutter digital design method and efficient Tool design, the complex profile milling cutter digital design and performance evaluation method based on Visual C# 3 to develop the complex profile milling cutter design platform based on Mysql workbench 6 to build a complex profile milling cutter design platform. And with the support of database based on complex profile milling cutter design platform to complete the three complex line the cutter design, applied to the 600 MW steam turbine rotor slot in the process of the three process. In the actual production of three knives for the design of the application, and service life compared with the imported models tool. The results show that three knife tool life are more than the import tool. This proves the reliability digital design method of complex line element method of cutter and extension based on.
【學(xué)位授予單位】:山東大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:TG714;TG501.3
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王德志;董睿;朱云明;;金屬切削過(guò)程韌性斷裂的有限元仿真現(xiàn)狀[J];科技創(chuàng)新與應(yīng)用;2015年26期
2 李國(guó)超;孫杰;;整體式立銑刀刃磨仿真技術(shù)研究現(xiàn)狀與發(fā)展趨勢(shì)[J];機(jī)械工程學(xué)報(bào);2015年09期
3 姜秀英;;501鋁高速鋼材料在加工汽輪機(jī)用刀具中應(yīng)用[J];機(jī)械工程師;2014年05期
4 羅建平;王為民;曹仁;;汽輪機(jī)輪槽銑刀材料的應(yīng)用[J];工具技術(shù);2014年03期
5 楊輝軍;陳惠賢;;基于Deform的樅樹(shù)型輪槽銑刀加工仿真研究[J];工具技術(shù);2014年01期
6 張孟恩;蕭偉鋒;王樹(shù)林;;整體硬質(zhì)合金立銑刀前角測(cè)量方法的優(yōu)化[J];工具技術(shù);2013年07期
7 張海東;顧立志;;立銑刀三維造型的參數(shù)化建模系統(tǒng)構(gòu)建[J];華僑大學(xué)學(xué)報(bào)(自然科學(xué)版);2013年06期
8 姚運(yùn)萍;王薇;高升;;樅樹(shù)型輪槽精銑刀熱—力耦合場(chǎng)分析[J];工具技術(shù);2012年12期
9 朱茹敏;紀(jì)蓮清;劉書(shū)鋒;;基于Deform-3D切削鎳基合金的有限元仿真研究[J];鑄造技術(shù);2012年11期
10 劉迎春;林琪;龐繼有;劉戰(zhàn)強(qiáng);;切削用量對(duì)立銑加工鈦合金Ti6Al4V切削力和切削溫度影響規(guī)律的有限元仿真研究[J];工具技術(shù);2012年10期
,本文編號(hào):1772536
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/1772536.html