抗垢耐腐蝕Ni-P-亞微米Sn復(fù)合鍍層的制備及性能研究
本文選題:亞微米Sn 切入點(diǎn):Ni-P化學(xué)鍍 出處:《江蘇大學(xué)》2017年碩士論文
【摘要】:抗垢耐磨耐腐蝕的Ni-P鍍層在熱能、石油、化工等諸多領(lǐng)域具有廣泛的應(yīng)用背景。本文首次提出低表面能和高電子釋放能力協(xié)同效應(yīng),利用Ni-P鍍層本身具有的低表面能和金屬Sn顆粒擁有的較強(qiáng)電子釋放能力,開(kāi)發(fā)出耐腐蝕和抗垢于一體的Ni-P-亞微米Sn復(fù)合鍍層,具體的研究工作和取得的成果如下:用非離子型OP-10表面活化劑和超聲波分散及施鍍過(guò)程機(jī)械攪拌的綜合辦法來(lái)處理Sn顆粒的團(tuán)聚問(wèn)題,超聲波分散時(shí)間為2h。采用L16(45)正交試驗(yàn)方案,得出最佳的工藝參數(shù),即NiSO_4·6H_2O取26g/L;NaH_2PO_2·H_2O取24g/L;OP-10取100mg/L;Sn含量取2g/L;C_6H_8O_7·H_2O取15g/L;C_3H_6O_3取3g/L;CH_3COONa取6g/L;PH取5.4;機(jī)械攪拌速度為200r/min;控制溫度90℃。Sn顆粒在鍍層中分布均勻,Ni、P、Sn的含量分別達(dá)到了60.61%、8.04%、9.88%,復(fù)合鍍層的結(jié)合力為30N。亞微米Sn加入到Ni-P鍍層中,有助于晶粒的細(xì)化,組織更加致密,從而提高了鍍層的硬度,經(jīng)過(guò)相同的熱處理后,Ni-P-亞微米Sn復(fù)合鍍層的硬度值均高于Ni-P鍍層硬度,熱處理300℃下,硬度達(dá)到最高值1072.4HV。XRD分析表明:鍍態(tài)下的Ni-P-亞微米Sn復(fù)合鍍層為非晶態(tài)結(jié)構(gòu),經(jīng)過(guò)500℃熱處理后,鍍層的結(jié)構(gòu)逐漸轉(zhuǎn)變?yōu)楹蠸n、Ni_5P_4、Ni_2P、Ni_3P、Ni_5P_2、Ni_2P等多個(gè)相的晶態(tài)結(jié)構(gòu)。鍍層的摩擦磨損測(cè)試表明:Ni-P-亞微米Sn復(fù)合鍍層的摩擦系數(shù)0.382比Ni-P鍍層的摩擦系數(shù)0.455降低了16.04%,耐摩擦性能更好。當(dāng)Sn含量為6g/L時(shí),復(fù)合鍍層的耐磨性最好,可見(jiàn)并不是Sn含量越多,對(duì)鍍層的耐磨性越好。隨著熱處理溫度的提高,復(fù)合鍍層不斷的晶化,硬度提高,抵抗塑性變形和摩擦力的能力提高,增加了耐磨性,熱處理300℃下,Ni-P-亞微米Sn復(fù)合鍍層有著最佳的耐磨性。均勻腐蝕實(shí)驗(yàn)表明:在5%H_2SO_4和3.5%NaCl中,Ni-P-亞微米Sn復(fù)合鍍層的抗腐蝕性能比起Ni-P鍍層分別提高了26.32%和51.1%,比起Q235提高了近45%;電化學(xué)腐蝕測(cè)試表明,Ni-P-亞微米Sn復(fù)合鍍層的自腐蝕電位比起Ni-P鍍層更正,自腐蝕電流更低,耐腐蝕性能更好。復(fù)合鍍層的交流阻抗參數(shù)與Ni-P鍍層和基體材料相比,傳荷電阻值更大,電容值更小,孔隙率更低,耐腐蝕性能更好,當(dāng)Sn的含量為2g/L時(shí),Ni-P-亞微米Sn復(fù)合鍍層抗腐蝕性是最好的,隨著Sn顆粒含量的增加,鍍層的孔隙率也隨之增大,復(fù)合鍍層的耐腐蝕性能越來(lái)越差。熱處理200℃時(shí)Ni-P-亞微米Sn復(fù)合鍍層的耐腐蝕性最好,400℃時(shí)最差,熱處理改變了鍍層的組織結(jié)構(gòu),從而改變了鍍層的耐腐蝕能力。Ni-P-亞微米Sn復(fù)合鍍層的污垢增重明顯低于Ni-P鍍層和Q235基體,與Q235基體相比,復(fù)合鍍層的抗垢性能提高55%;與Ni-P鍍層相比,復(fù)合鍍層抗垢性能提高了46%。Ni-P-亞微米Sn復(fù)合鍍層的接觸角最大,達(dá)到了120.2°,表面自由能的計(jì)算,也得出復(fù)合鍍層具有最小的表面自由能,為15mJ/m~2,接觸角和表面自由能的計(jì)算都充分說(shuō)明了亞微米Sn的加入有利于提高鍍層的抗垢性能。流速對(duì)于鍍層抗垢性能的影響,是擴(kuò)散、沉積作用和剝蝕作用的結(jié)合。流速較低時(shí),擴(kuò)散起主導(dǎo)作用;流速較大時(shí),剝蝕起主導(dǎo)作用。轉(zhuǎn)速?gòu)?50r/min提高到550r/min時(shí),污垢的增重是顯著的提高;當(dāng)轉(zhuǎn)速由550r/min提高到750r/min時(shí),污垢的增重反而下降,甚至比350r/min時(shí)的增重還要低。溫度越大,微溶性鹽溶解度降低,污垢沉積量也隨之增加。隨著亞微米Sn含量的增加,復(fù)合鍍層表面的自由能值也隨著增大。鍍層表面的污垢沉積也逐漸覆蓋整個(gè)表面,呈現(xiàn)棉絮狀分布,污垢沉積量逐漸增大,抗垢性能隨之減小,Sn含量為2g/L時(shí),制備的復(fù)合鍍層抗垢性能做好。
[Abstract]:Ni-P anti fouling coating wear resistance corrosion resistance in heat, oil, is widely applied in many fields such as chemical industry. This paper first proposed the low surface energy and high electron releasing ability of synergistic effect, strong electron releasing ability by Ni-P coating has low surface energy and metal particles with Sn, developed the Ni-P- sub micron Sn composite the coating corrosion resistance and anti fouling in one of the specific research work and achievements are as follows: the problem of dispersion and application of a comprehensive approach to deal with the mechanical stirring plating process of Sn particles with nonionic surfactant OP-10 and ultrasonic, ultrasonic time is 2h. by L16 (45) orthogonal test scheme, the process the best parameters of NiSO_4 6H_2O 26g/L NaH_2PO_2 H_2O; 24g/L; OP-10 100mg/L; Sn 2g/L C_6H_8O_7 H_2O content; 15g/L; C_3H_6O_3 3g/L; CH_3COONa 6g/L; PH 5.4; mechanical stirring Mixing speed is 200r/min; the control temperature of 90.Sn particles are uniformly distributed in the coating, Ni, P, Sn were respectively 60.61%, 8.04%, 9.88%, the binding force of composite coating was added to the Ni-P 30N. sub micron Sn coating, contributes to grain refinement, more compact structure, and to improve the the hardness of the coating after heat treatment, the same, Ni-P- sub micron Sn composite coating hardness values were higher than the Ni-P hardness, heat treatment at the temperature of 300 DEG C, the hardness reaches the highest value of 1072.4HV.XRD analysis showed that Ni-P- sub micron plated Sn composite coating is of amorphous structure, after 500 DEG C after heat treatment, coating structure gradually transforms to contain Sn, Ni_5P_4, Ni_2P, Ni_3P, Ni_5P_2, Ni_2P and other phases of the crystal structure. The friction and wear test showed that the friction coefficient of Ni-P- coating sub micron composite coating Sn 0.382 than the friction coefficient of Ni-P coating 0.455 is reduced by 16.04%, wear resistance Better. When the Sn content is 6g/L, the wear resistance of the composite coating is the best, not seen the increasing of Sn content, the better wear resistance of the coating. With the increase of heat treatment temperature, crystallization, continuous composite coating hardness, resistance to plastic deformation and friction increase, increased wear resistance, heat treatment at 300, Ni-P- sub micron Sn composite coatings have excellent wear resistance. That uniform corrosion experiment in 5%H_2SO_4 and 3.5%NaCl, Ni-P- sub micron Sn composite coating corrosion resistance than Ni-P coating were increased by 26.32% and 51.1%, compared to Q235 increased by nearly 45%; electrochemical corrosion tests show that the corrosion potential than Ni-P coating correction Ni-P- sub micron Sn composite coating, the corrosion current is lower corrosion resistance. The composite coating of impedance parameters compared with the Ni-P coating and the substrate, charge transfer resistance is large, the capacitance is smaller, Lower porosity, better corrosion resistant performance, when the content of Sn is 2g/L, Ni-P- sub micron Sn composite coating corrosion resistance is the best, with the increase of Sn particle content, the porosity of the coating increases, the corrosion resistance of composite coating is more and more poor. Heat treatment at 200 DEG Ni-P- sub micron Sn composite coating the best corrosion resistance, 400 degrees is the worst, the heat treatment to change the coating microstructure, thus changing the coating corrosion resistance of the.Ni-P- sub micron Sn composite coating dirt weight was significantly lower than that of Ni-P coating and Q235 substrate, compared with the Q235 matrix, anti fouling performance of composite coating increased by 55% compared with Ni-P; coating, anti fouling properties of the composite coatings increased 46%.Ni-P- sub micron Sn composite coating the contact angle, reached 120.2 degrees, the calculation of surface free energy, also obtained composite coating has the minimum surface free energy of 15mJ/, m~2, contact angle and surface Calculation of surface free energy are fully illustrated with sub micron Sn can improve the anti fouling property of the coating. The diffusion effect, velocity for anti fouling coatings, combined with sedimentation and denudation. The flow rate is low, diffusion plays a leading role; the flow rate is larger, erosion plays a leading role from the speed. 350r/min increased to 550r/min, the dirt weightening is remarkably increased; when the speed is increased from 550r/min to 750r/min, the dirt weight decreased, even more than 350r/min when the weight is still lower. The greater the temperature, slightly soluble salt solubility is reduced, the dirt deposition increases. With the increase of sub micron Sn the content of the composite coating, the surface free energy value with the increase of fouling deposition on the surface of the coating. It gradually cover the entire surface, showing the distribution of cotton wool, dirt deposition increases, anti fouling properties decreased, Sn content is 2g/L, preparation The anti scaling property of the composite coating is done well.
【學(xué)位授予單位】:江蘇大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TG174.4
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 徐志明;張一龍;徐欣;;溫度及濃度對(duì)析晶污垢沉積特性影響的模擬研究[J];中國(guó)電機(jī)工程學(xué)報(bào);2014年35期
2 王勇;高楊;馬春華;韓富和;王振生;;鍍液組分含量對(duì)Ni-P化學(xué)鍍鍍速的影響[J];兵器材料科學(xué)與工程;2013年02期
3 程延海;張世舉;彭玉興;朱真才;程林;;熱交換器非晶鍍層表面的污垢特性研究[J];工程熱物理學(xué)報(bào);2012年05期
4 劉義達(dá);鄒勇;趙亮;劉文;程林;;表面粗糙度對(duì)析晶污垢附著的影響[J];工程熱物理學(xué)報(bào);2010年08期
5 黃慶軍;任俊超;蘇是;黃蕾;;中國(guó)換熱器產(chǎn)業(yè)現(xiàn)狀及發(fā)展趨勢(shì)[J];石油和化工設(shè)備;2010年01期
6 程延海;鄒勇;程林;趙亮;朱真才;;表面改性對(duì)換熱面抗垢性能的影響[J];工程熱物理學(xué)報(bào);2009年09期
7 劉明言;Malayeri M.Reza;Muller-Steinhagen Hans;;功能氧化物薄膜液相沉積制備及應(yīng)用研究進(jìn)展[J];化工進(jìn)展;2009年02期
8 程延海;鄒勇;程林;李金旺;劉文;;磷含量對(duì)化學(xué)鍍Ni-P層抗垢性能與抗蝕性能的影響[J];人工晶體學(xué)報(bào);2008年05期
9 全貞花;陳永昌;馬重芳;;碳酸鈣于換熱表面結(jié)垢的傳熱與傳質(zhì)模型[J];中國(guó)科學(xué)(E輯:技術(shù)科學(xué));2008年05期
10 谷國(guó)團(tuán),黨鴻辛;超疏水性透明涂層的研究進(jìn)展[J];河南大學(xué)學(xué)報(bào)(自然科學(xué)版);2004年04期
相關(guān)博士學(xué)位論文 前1條
1 程延海;改性換熱表面污垢形成及凝結(jié)傳熱研究[D];山東大學(xué);2009年
相關(guān)碩士學(xué)位論文 前4條
1 王成剛;Ni-P-納米TiO_2化學(xué)復(fù)合鍍層的制備工藝與性能[D];揚(yáng)州大學(xué);2010年
2 李強(qiáng);合金材料的防垢防腐蝕機(jī)理及實(shí)驗(yàn)研究[D];哈爾濱工業(yè)大學(xué);2009年
3 和彥光;合金材料的阻垢機(jī)理及實(shí)驗(yàn)研究[D];哈爾濱工業(yè)大學(xué);2008年
4 王可平;電化學(xué)防垢防蠟防腐機(jī)理及實(shí)驗(yàn)研究[D];中國(guó)石油大學(xué);2008年
,本文編號(hào):1723264
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/1723264.html