旋轉(zhuǎn)磁極輔助磁粒研磨管內(nèi)表面的試驗(yàn)研究
本文選題:磁粒研磨 切入點(diǎn):管件 出處:《遼寧科技大學(xué)》2017年碩士論文
【摘要】:隨著航空航天、石油、醫(yī)療等行業(yè)的迅猛發(fā)展,各行業(yè)對零件的精度要求越來越高。其中管件作為氣體或液體等輸送載體,在各行業(yè)中的作用尤為重要,由于原始管件在制作過程中,管件內(nèi)表面會存在一些原始加工缺陷,如氣孔、拉傷、裂紋等,在輸送高壓流體時(shí)會產(chǎn)生湍流從而造成喘振,致使整體裝置的可靠性降低,影響裝置的正常性能的使用,因此需要對管件內(nèi)表面進(jìn)行拋光來去除缺陷,提高內(nèi)表面光潔度,提升管件的輸送性能。由于磁粒研磨法具有柔性高、自銳性好、加工精度高等優(yōu)點(diǎn),利用磁粒研磨法拋光管內(nèi)表面取得了良好的效果,但是其加工效率較低,通過大量的試驗(yàn)研究,通過在管內(nèi)表面添加輔助磁極增大單位空間的磁感應(yīng)強(qiáng)度,提升磁性磨粒對管件內(nèi)表面的研磨壓力,進(jìn)而提高表面材料的去除量,提高加工效率。但是添加輔助磁極后磁性磨粒的翻滾、柔性等性能下降,表面易出現(xiàn)劃傷,加工后表面質(zhì)量不理想,因此提出了一種旋轉(zhuǎn)磁極輔助磁粒研磨管內(nèi)表面的加工方法,較好的解決了上述問題。本文以磁粒研磨的加工原理為基礎(chǔ),通過對磁性磨粒在加工過程中的受力及加工狀態(tài)進(jìn)行分析,得出影響磁粒研磨法的兩個(gè)條件為磁性磨粒與管件內(nèi)表面的相對運(yùn)動方向及研磨時(shí)對管件內(nèi)表面的壓力,利用提高研磨壓力為可行性手段,通過添加輔助磁極提高單位空間內(nèi)的磁感應(yīng)強(qiáng)度來增大研磨壓力。但是由于添加輔助磁極后磁性磨粒的整體性能受到限制,加工后缺陷較多,因此通過分析表面材料對磁性磨粒的運(yùn)動方式的影響,得出通過不斷改變磁性磨粒相對管件內(nèi)表面運(yùn)動方向,從而達(dá)到對表面材料的均勻去除。通過分析振動輔助磁粒研磨管內(nèi)表面的加工方法提出利用旋轉(zhuǎn)磁極輔助磁粒研磨管內(nèi)表面的加工方式,通過在管內(nèi)的輔助磁極上添加一個(gè)沿管徑向旋轉(zhuǎn)運(yùn)動,從而改變磁性磨粒團(tuán)的整體磨削性能、改變單一的研磨軌跡,達(dá)到對管內(nèi)表面的精密拋光效果。利用ADAMS虛擬樣機(jī)模擬不同工藝參數(shù)下的研磨軌跡,分析在不同工藝參數(shù)下各軌跡的整體形貌,為試驗(yàn)提供理論依據(jù)。通過自行設(shè)計(jì)試驗(yàn)裝置,驗(yàn)證了旋轉(zhuǎn)磁極輔助磁粒研磨管內(nèi)表面的試驗(yàn)可行性,通過對試驗(yàn)裝置的重新優(yōu)化設(shè)計(jì),對比各參數(shù)下所研磨的管件內(nèi)表面微觀形貌,得出在不同加工狀態(tài)下對管件內(nèi)表面質(zhì)量的影響。經(jīng)試驗(yàn)得出:利用旋轉(zhuǎn)磁極輔助磁粒研磨管內(nèi)表面可以解決管件添加輔助磁極后由于壓力過大等原因造成的表面劃傷及加工后表面質(zhì)量不理想的問題,通過對比試驗(yàn)的分析,得出利用磁粒研磨法加工管內(nèi)表面時(shí),研磨軌跡的不斷交叉可以有效、快速的去除表面材料波峰,并且將缺陷擴(kuò)展降低表面質(zhì)量的影響較好的解決。利用旋轉(zhuǎn)磁極輔助磁粒研磨管內(nèi)表面可以大幅提高加工效率,表面缺陷基本去除,表面紋理分布均勻,表面質(zhì)量較好。
[Abstract]:With the rapid development of aerospace, petroleum, medical and other industries, the precision of parts is required more and more.As a carrier of gas or liquid, pipe fittings play a particularly important role in various industries. Because of the original pipe fittings in the manufacturing process, there will be some original processing defects, such as pores, tensile injuries, cracks, etc.When conveying high pressure fluid, turbulence will produce surge, which will reduce the reliability of the whole device and affect the normal performance of the device. Therefore, it is necessary to polish the inner surface of the pipe to remove the defects and improve the finish of the inner surface.Improve the delivery performance of pipe fittings.Due to the advantages of high flexibility, good self-sharpness and high machining precision, the magnetic particle lapping method has achieved good results in polishing the inner surface of the tube, but its machining efficiency is relatively low.By adding auxiliary magnetic poles to the inner surface of the tube to increase the intensity of magnetic induction in unit space, the grinding pressure of magnetic abrasive particles on the inner surface of pipe fittings is raised, and the removal of surface materials and processing efficiency are improved.However, with the addition of auxiliary magnetic poles, the properties of magnetic abrasive particles are reduced, such as the flexibility, the surface is easily scratched, and the surface quality is not ideal after processing. Therefore, a method of grinding the inner surface of the tube with rotating magnetic pole is proposed.A better solution to the above problems.Based on the principle of magnetic abrasive grinding, this paper analyzes the force and processing state of magnetic abrasive in the process of processing.It is concluded that the two conditions affecting the magnetic abrasive grinding method are the relative movement direction of the magnetic abrasive particle and the inner surface of the tube and the pressure on the inner surface of the tube during grinding.The grinding pressure is increased by adding auxiliary magnetic poles to increase the intensity of magnetic induction in unit space.However, due to the limitation of the overall properties of magnetic abrasive particles after the addition of auxiliary magnetic poles and the more defects after processing, the influence of surface materials on the movement of magnetic abrasive particles is analyzed.It is concluded that the uniform removal of the surface material can be achieved by constantly changing the direction of magnetic abrasive particles moving relative to the inner surface of the tube fittings.By analyzing the machining method of the inner surface of the tube by vibration assisted magnetic particle grinding, the method of grinding the inner surface of the tube by using the rotating magnetic pole to grind the inner surface of the tube is put forward, and a rotating motion along the diameter of the tube is added to the auxiliary magnetic pole in the tube.Thus, the whole grinding performance of magnetic abrasive particle is changed, and the single grinding track is changed to achieve the precision polishing effect on the inner surface of the tube.The ADAMS virtual prototype is used to simulate the grinding trajectory under different process parameters, and the overall morphology of each locus under different process parameters is analyzed, which provides a theoretical basis for the experiment.The feasibility of testing the inner surface of the tube by rotating magnetic pole assisted magnetic particle grinding was verified by the self-designed test device. Through the re-optimization design of the test device, the microcosmic morphology of the internal surface of the abrasive tube was compared under various parameters.Through experiments, it is concluded that the internal surface of the tube can be grinded by rotating magnetic pole assisted magnetic particle, which can solve the problems of surface scratching caused by the addition of auxiliary magnetic pole and the unsatisfactory surface quality after machining after adding the auxiliary magnetic pole. The analysis of the contrast test is carried out.It is concluded that when the inner surface of pipe is machined by magnetic particle grinding, the continuous intersection of the grinding track can effectively remove the wave peak of the surface material and reduce the influence of the defect expansion to the surface quality.The internal surface of the tube can be greatly improved by using rotating magnetic pole assisted magnetic particle grinding. The surface defects are basically removed and the surface texture is evenly distributed and the surface quality is better.
【學(xué)位授予單位】:遼寧科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TG580.68
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 韓冰;云昊;陳燕;應(yīng)駿;;Al_2O_3陶瓷管內(nèi)表面高效精密研磨試驗(yàn)研究[J];機(jī)械設(shè)計(jì)與制造;2016年01期
2 韓冰;劉立鑫;陳燕;;磁力研磨法加工彎管內(nèi)表面的工藝參數(shù)優(yōu)化[J];中國機(jī)械工程;2015年06期
3 陳燕;張廣彬;韓冰;李昌;;磁力研磨法對陶瓷管內(nèi)表面超精密拋光技術(shù)的試驗(yàn)研究[J];摩擦學(xué)學(xué)報(bào);2015年02期
4 陳燕;張耀明;鄧超;韓冰;;V形磁鐵在SUS304管內(nèi)表面拋光中的應(yīng)用[J];機(jī)械工程學(xué)報(bào);2014年15期
5 韓冰;鄧超;陳燕;;球形磁鐵在彎管內(nèi)表面磁力研磨中的應(yīng)用[J];摩擦學(xué)學(xué)報(bào);2013年06期
6 丘平;樂敏;;石油化工裝置中不銹鋼鋼管的應(yīng)用[J];石油化工設(shè)備技術(shù);2013年02期
7 趙鵬兵;史耀耀;寧立群;;整體葉盤高效強(qiáng)力復(fù)合銑A軸高精度控制技術(shù)研究[J];航空學(xué)報(bào);2013年07期
8 郭忠達(dá);王新海;陽志強(qiáng);劉衛(wèi)國;杭凌俠;陳智利;;磁流變拋光可塑性對彗尾u〉撓跋靃J];西安工業(yè)大學(xué)學(xué)報(bào);2010年02期
9 邱騰雄;閻秋生;高偉強(qiáng);;磁力研磨加工塑料模具鋼的表面粗糙度特性研究[J];制造技術(shù)與機(jī)床;2008年04期
10 翟小兵;周錦進(jìn);;脈沖電化學(xué)光整加工技術(shù)的應(yīng)用研究[J];制造技術(shù)與機(jī)床;2008年01期
相關(guān)博士學(xué)位論文 前2條
1 張桂香;霧化快凝磁性磨料制備及其磁力光整加工性能研究[D];南京航空航天大學(xué);2012年
2 李俊燁;微小孔磨粒流拋光裝置的研制與工藝研究[D];長春理工大學(xué);2011年
相關(guān)碩士學(xué)位論文 前2條
1 劉有超;磨料流拋光裝備技術(shù)研究[D];長春理工大學(xué);2013年
2 李欣;彎管內(nèi)表面拋光技術(shù)研究[D];長春理工大學(xué);2009年
,本文編號:1723439
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/1723439.html