天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 鑄造論文 >

平整機(jī)軋制力的神經(jīng)網(wǎng)絡(luò)預(yù)報(bào)模型研究

發(fā)布時(shí)間:2018-01-21 23:40

  本文關(guān)鍵詞: 平整機(jī) 軋制力 神經(jīng)網(wǎng)絡(luò) ReLU 傳播算法 正則化 出處:《河北工程大學(xué)》2017年碩士論文 論文類(lèi)型:學(xué)位論文


【摘要】:鋼鐵工業(yè)支持了國(guó)民經(jīng)濟(jì)以及國(guó)防建設(shè)的發(fā)展,同時(shí)各行各業(yè)的發(fā)展又推動(dòng)著鋼鐵行業(yè)的產(chǎn)品質(zhì)量不斷進(jìn)步。對(duì)于提高帶鋼產(chǎn)品的質(zhì)量,平整是其不可或缺的一個(gè)環(huán)節(jié)。它不僅能提高帶鋼的表面質(zhì)量,還直接影響其物理、化學(xué)和力學(xué)性能,進(jìn)而達(dá)到后續(xù)工藝階段要求的規(guī)格。針對(duì)平整機(jī)軋制力的預(yù)報(bào)研究是合理優(yōu)化平整軋制過(guò)程、提高平整機(jī)控制水平和改善工作狀態(tài)所面臨的一個(gè)重要課題。本文針對(duì)平整機(jī)軋制力預(yù)測(cè)精度不高的問(wèn)題,以影響平整機(jī)軋制過(guò)程的參數(shù)為研究對(duì)象,以軋制理論和神經(jīng)網(wǎng)絡(luò)為理論依據(jù),提出以ReLU為激活函數(shù)的人工神經(jīng)網(wǎng)絡(luò)模型來(lái)對(duì)平整機(jī)的軋制力進(jìn)行預(yù)報(bào)研究。進(jìn)行了以下研究工作:對(duì)在線軋制數(shù)據(jù)進(jìn)行主成分分析降維處理,獲得影響平整機(jī)軋制力的主要因素,并將其作為主成分輸入神經(jīng)網(wǎng)絡(luò)模型的輸入層神經(jīng)元,將平整機(jī)的軋制力作為神經(jīng)網(wǎng)絡(luò)的輸出層神經(jīng)元,以網(wǎng)格搜索的方式對(duì)神經(jīng)網(wǎng)絡(luò)隱層的相關(guān)參數(shù)和算法進(jìn)行實(shí)驗(yàn),采用python語(yǔ)言進(jìn)行編程,建立了2360組平整機(jī)軋制力的神經(jīng)網(wǎng)絡(luò)預(yù)報(bào)模型;谏鲜鲅芯?jī)?nèi)容和成果,利用建模分析,結(jié)合大量現(xiàn)場(chǎng)平整軋制數(shù)據(jù)的分析處理,通過(guò)調(diào)整隱層層數(shù)、神經(jīng)元數(shù)、傳播算法、正則化方法,篩選出了預(yù)測(cè)誤差最低的神經(jīng)網(wǎng)絡(luò)模型。同時(shí),這種實(shí)驗(yàn)方法可以適用于不同在線軋制數(shù)據(jù)下的平整機(jī)軋制力的預(yù)報(bào),對(duì)于平整生產(chǎn)具有一定的指導(dǎo)意義與參考價(jià)值,同時(shí)該實(shí)驗(yàn)思路可以推廣到其它參數(shù)的預(yù)報(bào)研究中。
[Abstract]:The iron and steel industry has supported the development of national economy and national defense construction. At the same time, the development of various industries has promoted the continuous progress of the steel industry product quality. Flatness is an indispensable part of the strip. It can not only improve the surface quality of strip, but also directly affect its physical, chemical and mechanical properties. According to the prediction of rolling force, it is reasonable to optimize the rolling process. It is an important task to improve the control level and improve the working state of the mill. In this paper, the parameters that affect the rolling process of the mill are taken as the research object, aiming at the problem that the prediction accuracy of the rolling force is not high. It is based on rolling theory and neural network. An artificial neural network model with ReLU as the activation function is proposed to predict the rolling force of the temper mill. The following research work is carried out: the principal component analysis (PCA) dimensionality reduction processing of the rolling data on line is carried out. The main factors that affect the rolling force are obtained and used as the input layer neuron of the neural network model and the rolling force of the mill as the output layer neuron of the neural network. The related parameters and algorithms of the hidden layer of neural network are experimented with the method of grid search, and python language is used to program. The neural network prediction model of rolling force of 2360 sets of leveling mill is established. Based on the above research contents and results, the model is used to analyze and deal with a large number of rolling data, and the hidden layer number is adjusted. The neural network model with the lowest prediction error is selected by neuron number, propagation algorithm and regularization method. At the same time, this experimental method can be used to predict the rolling force of flat mill under different on-line rolling data. It has certain guiding significance and reference value for leveling production, and the experimental idea can be extended to the prediction of other parameters at the same time.
【學(xué)位授予單位】:河北工程大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TG333.4

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 劉杰輝;范冬雨;田潤(rùn)良;;基于ReLU激活函數(shù)的軋制力神經(jīng)網(wǎng)絡(luò)預(yù)報(bào)模型[J];鍛壓技術(shù);2016年10期

2 李淵;駱志剛;管乃洋;尹曉堯;王兵;伯曉晨;李非;;生物醫(yī)學(xué)數(shù)據(jù)分析中的深度學(xué)習(xí)方法應(yīng)用[J];生物化學(xué)與生物物理進(jìn)展;2016年05期

3 張清東;張勃洋;李博;張曉峰;;板帶軋制過(guò)程二維流函數(shù)-無(wú)網(wǎng)格伽遼金求解方法及其應(yīng)用[J];機(jī)械工程學(xué)報(bào);2015年10期

4 李海軍;徐建忠;王國(guó)棟;;熱軋帶鋼精軋過(guò)程高精度軋制力預(yù)測(cè)模型[J];東北大學(xué)學(xué)報(bào)(自然科學(xué)版);2009年05期

5 董永剛;張文志;宋劍鋒;;應(yīng)用上限原理求解重軌萬(wàn)能軋制過(guò)程軋制力[J];力學(xué)與實(shí)踐;2008年05期

6 趙德文;王根磯;劉相華;王國(guó)棟;;扁帶拉拔擠壓柱坐標(biāo)應(yīng)變速率矢量?jī)?nèi)積[J];東北大學(xué)學(xué)報(bào)(自然科學(xué)版);2007年04期

7 王曉東;石錦;史慶南;王效琪;陳義武;;板帶軋制有限元建模研究[J];機(jī)械;2007年02期

8 丁小梅,劉鵬;基于小波神經(jīng)網(wǎng)絡(luò)的軋制壓力高精度預(yù)報(bào)模型[J];工程建設(shè)與設(shè)計(jì);2005年06期

9 孫克,王長(zhǎng)松,羅永軍;基于小腦模型神經(jīng)網(wǎng)絡(luò)的軋制力預(yù)報(bào)模型[J];鋼鐵研究;2004年01期

10 陶紅勇,王京,陸秀志;神經(jīng)網(wǎng)絡(luò)在板形控制中的應(yīng)用[J];軋鋼;2003年04期

,

本文編號(hào):1452899

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/1452899.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶(hù)1c526***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com