紅外材料非球面透鏡的超精密磨削加工關(guān)鍵技術(shù)研究
本文關(guān)鍵詞: 紅外材料 非球面透鏡 砂輪修整 超精密磨削 聲發(fā)射信號(hào)監(jiān)測(cè) 出處:《哈爾濱工業(yè)大學(xué)》2016年博士論文 論文類(lèi)型:學(xué)位論文
【摘要】:紅外透鏡是紅外光學(xué)系統(tǒng)中用來(lái)傳輸、折射、入射光線(xiàn)的光學(xué)元器件,是紅外成像和制導(dǎo)系統(tǒng)中的關(guān)鍵元件。非球面透鏡能夠減小甚至消除由球面透鏡在準(zhǔn)直和聚焦系統(tǒng)中帶來(lái)的球差以及其他的一些光學(xué)像差,也可減少光學(xué)系統(tǒng)中光學(xué)元件的數(shù)量,簡(jiǎn)化光學(xué)系統(tǒng)的結(jié)構(gòu),降低光學(xué)系統(tǒng)的復(fù)雜性,使得光學(xué)系統(tǒng)更小和更輕。因此,非球面紅外透鏡在航空航天、電氣、土木工程、醫(yī)學(xué)、汽車(chē)等諸多領(lǐng)域都具有非常重要的應(yīng)用價(jià)值和廣闊的應(yīng)用前景。目前,非球面透鏡大批量生產(chǎn)的主要途徑為古典研磨拋光,存在加工效率低、產(chǎn)品一致性差的特點(diǎn)。而超精密磨削加工具有加工效率高、產(chǎn)品一致性好、工藝穩(wěn)定性強(qiáng)的特點(diǎn),是非球面紅外透鏡精密成形的新技術(shù)之一。本課題以紅外材料單晶硅和多光譜CVD硫化鋅為研究對(duì)象,以實(shí)現(xiàn)紅外成像與制導(dǎo)技術(shù)關(guān)鍵光學(xué)元件的Φ150mm球面、Φ93.5mm非球面透鏡的確定性、低損傷、超精密磨削加工為目的,主要進(jìn)行以下研究工作:分析現(xiàn)有的非球面磨削加工方法,結(jié)合實(shí)際設(shè)備條件,選擇適用的磨削加工方法。理論分析非球面輪廓對(duì)磨削加工過(guò)程中砂輪與工件幾何接觸弧長(zhǎng)、未變形切削厚度、殘留高度以及各種誤差的影響,通過(guò)理論分析與實(shí)驗(yàn)研究相結(jié)合的方法確定出最終磨削加工非球面的實(shí)驗(yàn)方案。結(jié)果表明,垂直磨削法中的砂輪與工件幾何接觸弧長(zhǎng)的變化和未變形切削厚度均較小,可以獲得更小的殘留高度,砂輪誤差對(duì)工件表面質(zhì)量的影響更小,實(shí)驗(yàn)后獲得的表面質(zhì)量更高、更穩(wěn)定。在上述加工方法研究的基礎(chǔ)上,依據(jù)不同的磨削加工需求,面向于粗磨和精磨非球面用圓弧形金剛石砂輪,提出兩種基于旋轉(zhuǎn)綠碳化硅磨棒的在位精密修整技術(shù)。針對(duì)不同的修整方案,分析修整系統(tǒng)中磨棒的形狀誤差和砂輪的對(duì)刀誤差對(duì)金剛石砂輪修整形狀精度的影響規(guī)律以及相應(yīng)的解決方法。通過(guò)工藝實(shí)驗(yàn),研究修整參數(shù)對(duì)金剛石砂輪修整效果的影響規(guī)律,優(yōu)化相應(yīng)修整工藝參數(shù)。修整后砂輪的圓弧輪廓度顯著提高,圓跳動(dòng)誤差顯著降低,為紅外材料非球面透鏡的超精密磨削加工提供了工具保障。研究了磨削紋路對(duì)加工后工件表面質(zhì)量的影響規(guī)律,提出基于優(yōu)化磨削工藝參數(shù)匹配關(guān)系的磨削紋路抑制策略,為磨削加工過(guò)程提供了工藝參數(shù)匹配關(guān)系的選擇依據(jù)。通過(guò)磨削加工實(shí)驗(yàn)選擇有利于紅外材料非球面透鏡超精密磨削加工的砂輪性能參數(shù);基于正交實(shí)驗(yàn)方法進(jìn)行超精密磨削的工藝參數(shù)優(yōu)化實(shí)驗(yàn),為大尺寸非球面的超精密磨削加工提供工藝支持;最后完成了大尺寸紅外材料非球面透鏡的超精密磨削加工。加工后,Φ150mm口徑單晶硅球面透鏡和Φ93.5mm口徑的多光譜CVD硫化鋅非球面透鏡由在位測(cè)量設(shè)備獲得的兩面面形精度PV均為0.5μm左右,表面粗糙度Ra均小于5nm,為非球面紅外透鏡的確定性、低損傷、超精密加工奠定工藝技術(shù)基礎(chǔ)。修整和磨削加工過(guò)程的信號(hào)監(jiān)測(cè)技術(shù),可減少砂輪修整及磨削狀態(tài)中不必要的時(shí)間和磨料消耗,提高整體加工效率,降低生產(chǎn)成本。最后,針對(duì)圓弧形金剛石砂輪的修整與非球面紅外透鏡的磨削加工過(guò)程,搭建了基于旋轉(zhuǎn)聲發(fā)射傳感器的聲發(fā)射信號(hào)采集系統(tǒng)。分析處理了修整過(guò)程的原始聲發(fā)射信號(hào),并提取修整過(guò)程的特征值信號(hào),實(shí)現(xiàn)了旋轉(zhuǎn)磨棒修整法中修整結(jié)束特征閾值的判別。探索了加工工藝參數(shù)對(duì)非球面粗磨和精磨加工中信號(hào)特征值的影響程度,以及加工表層質(zhì)量與聲發(fā)射信號(hào)的關(guān)系,為實(shí)現(xiàn)砂輪修整及磨削加工的在線(xiàn)監(jiān)測(cè)提供了技術(shù)支撐。
[Abstract]:Infrared lens is used to transmit the infrared optical system, refractive index, optical components of incident light, is the key element and the infrared imaging guidance system. The aspheric lens can reduce or even eliminate the aberration caused by the spherical lens in collimating and focusing system as well as some other optical aberrations, also can reduce the number of optical elements in optical system the simplified structure of the optical system, reduce the complexity of the optical system, the optical system is smaller and lighter. Therefore, aspheric lens infrared in aerospace, electrical, civil engineering, medicine, and has very important application value and broad application prospects of the car and many other areas. At present, the main way of aspheric lens mass production for the classical polishing, has low processing efficiency, product consistency and difference. Ultra precision grinding has high machining efficiency, good product consistency The characteristics, process stability, is one of the new technology of aspheric lens infrared precision forming. The infrared materials of multi spectral CVD monocrystalline silicon and zinc sulfide as the research object, in order to achieve with 150mm spherical key optical components and infrared imaging guidance technology, uncertainty, 93.5mm diameter aspheric lens and low damage, ultra precision for the purpose of grinding, mainly for the following research work: analysis of non spherical surface grinding of the existing methods, combined with the actual condition of the equipment, selection of grinding method for aspheric profile. Theoretical analysis of grinding wheel and workpiece in grinding process of contact arc length, undeformed chip thickness, residual height and the influence of various errors, methods through the combination of theory analysis and experiment research to determine the final non spherical grinding experiment scheme. The results show that the grinding wheel grinding method in contact with the workpiece geometry The change of arc length and undeformed chip thickness are small, can get smaller residual height, smaller grinding error influence on workpiece surface quality, surface quality after the experiment obtained higher and more stable. Based on the above method, according to the different needs of the grinding processing, for coarse grinding and fine for grinding circular arc diamond wheel aspheric surface, puts forward two kinds of rotating rod mill in green silicon carbide based on precise dressing technique. According to the different effects of dressing, dressing system analysis tool setting error grinding rod shape error of grinding wheel and diamond grinding wheel dressing shape precision and the corresponding solutions. Through experiments, influence rule of dressing parameters on the diamond dressing effect, optimization of process parameters. After finishing the corresponding trimming arc wheel profile degree is greatly improved, circular runout error is significantly reduced, as Provides tools to protect the ultra precision grinding of spherical lens, infrared material was studied. Influence of grain grinding surface quality of the workpiece after machining, grinding lines optimization suppression strategy is proposed based on the relationship between grinding parameters, grinding process, select the basis for providing the parameters matching relationship. Through the experiment of grinding selection for infrared material non spherical lens grinding wheel performance parameters of ultra precision grinding; optimization of experimental parameters of ultra precision grinding based on orthogonal experimental method, for large aspheric surface ultra precision grinding process to provide support; finally completed the ultra precision grinding of aspheric lens of large infrared materials. After processing, multi CVD spectra of zinc sulfide with 150mm aperture spherical lens and the aperture diameter of 93.5mm silicon non spherical lens surfaces obtained by in situ measurement equipment The shape precision of PV were about 0.5 m, surface roughness Ra is less than 5nm, to determine the aspheric lens, infrared low damage, lay the foundation technology of ultra precision machining. Signal monitoring technology of dressing and grinding process, can reduce the unnecessary time and consumption of abrasive wheel dressing and grinding. To improve the machining efficiency, reduce the production cost. Finally, according to the grinding process of circular arc diamond wheel dressing and aspheric lens set rotating infrared, acoustic emission sensor acoustic emission signal acquisition system based on the analysis of the treatment. The dressing process of the original acoustic emission signal, and extract features of the dressing process value signal is realized the rotary grinding stick discrimination dressing method in end. To explore the threshold characteristics of influence of process parameters on non spherical coarse grinding and fine grinding of signal eigenvalues, and machining surface quality The relationship between the quantity and the acoustic emission signal provides a technical support for the on-line monitoring of grinding wheel dressing and grinding.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類(lèi)號(hào)】:TG580.6
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 袁華;;精密與超精密磨削關(guān)鍵技術(shù)探討[J];機(jī)械工程與自動(dòng)化;2011年05期
2 陳宏偉;;淺論精密與超精密磨削技術(shù)發(fā)展[J];中國(guó)科技投資;2012年27期
3 高興軍,趙恒華;精密和超精密磨削機(jī)理及磨削砂輪選擇的研究[J];機(jī)械制造;2004年12期
4 戴玉堂;姜德生;大森整;;新型反應(yīng)燒結(jié)碳化硅陶瓷的超精密磨削[J];中國(guó)機(jī)械工程;2006年06期
5 阮宏慧;張大衛(wèi);;熱源形貌對(duì)超精密磨削熱模型影響的研究[J];機(jī)械設(shè)計(jì);2009年02期
6 馮薇;;精密與超精密磨削的發(fā)展現(xiàn)狀[J];精密制造與自動(dòng)化;2009年02期
7 葉春梅;崔凱;覃冬梅;;淺論精密與超精密磨削工藝[J];輕工科技;2013年06期
8 王美印;;超精密磨削主軸產(chǎn)生橢圓的原因及對(duì)策[J];機(jī)械工藝師;1989年10期
9 崔繼文;超精密磨削新工藝[J];磨床與磨削;1997年02期
10 陳明君,董申,李旦,張飛虎;脆性材料超精密磨削時(shí)影響表面質(zhì)量因素的研究[J];機(jī)械工程學(xué)報(bào);2001年03期
相關(guān)會(huì)議論文 前1條
1 金衛(wèi)東;任成祖;王太勇;;微粉砂輪在線(xiàn)電解修整(ELID)超精密磨削的影響因素研究[A];2005年中國(guó)機(jī)械工程學(xué)會(huì)年會(huì)論文集[C];2005年
相關(guān)博士學(xué)位論文 前5條
1 陳冰;紅外材料非球面透鏡的超精密磨削加工關(guān)鍵技術(shù)研究[D];哈爾濱工業(yè)大學(xué);2016年
2 高尚;硅片超精密磨削減薄工藝基礎(chǔ)研究[D];大連理工大學(xué);2013年
3 金衛(wèi)東;硬脆材料氮化硅陶瓷的ELID超精密磨削技術(shù)研究[D];天津大學(xué);2005年
4 張銀霞;單晶硅片超精密磨削加工表面層損傷的研究[D];大連理工大學(xué);2006年
5 佟富強(qiáng);TN85金屬陶瓷球面偶件ELID超精密磨削技術(shù)研究[D];哈爾濱工業(yè)大學(xué);2010年
相關(guān)碩士學(xué)位論文 前10條
1 趙海軒;超精密磨削硅片變形規(guī)律的研究[D];大連理工大學(xué);2010年
2 張志剛;成孔劑對(duì)超精密磨削油石性能影響的研究[D];天津大學(xué);2012年
3 李世橋;單晶硅超精密磨削分子動(dòng)力學(xué)并行仿真的研究[D];大連理工大學(xué);2006年
4 霍守鋒;工程陶瓷的超精密磨削機(jī)理與實(shí)驗(yàn)研究[D];河北工業(yè)大學(xué);2003年
5 孟慶平;藍(lán)寶石高效超精密磨削技術(shù)及損傷檢測(cè)研究[D];大連理工大學(xué);2009年
6 張勝利;超精密磨削硅片表層損傷檢測(cè)的試驗(yàn)研究[D];大連理工大學(xué);2006年
7 韓華軍;醫(yī)用壓電陶瓷片的超精密磨削加工實(shí)驗(yàn)研究[D];蘇州大學(xué);2009年
8 李詩(shī);基于嵌入式技術(shù)的精密進(jìn)給工作臺(tái)控制系統(tǒng)研究與應(yīng)用[D];東華大學(xué);2008年
9 謝丹;非球面光學(xué)元件超精密磨削加工精度分析與誤差補(bǔ)償技術(shù)研究[D];長(zhǎng)春理工大學(xué);2011年
10 湯文博;微振動(dòng)對(duì)超精密磨削光學(xué)非球面的成型精度影響研究[D];長(zhǎng)春理工大學(xué);2011年
,本文編號(hào):1452914
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/1452914.html