搪瓷生產(chǎn)線在線統(tǒng)計圖像識別算法研究與軟件開發(fā)
[Abstract]:Image recognition technology is one of the key technologies to realize intelligent manufacturing in the future. In this paper, an online statistical system of enamel production line is used as the research object, and the image preprocessing, feature detection, image recognition and other techniques involved in the system are studied. A simple prototype system of product online statistics is implemented by using Matlab's GUI toolkit. The main work of this paper is as follows: first, the image preprocessing algorithm is studied, through histogram equalization, mean filter, piecewise linear transformation, The processing effect of image enhancement algorithm such as Gamma transform is compared and analyzed. The piecewise linear transform is used to preprocess the image collected under the condition of single product production. The methods of color extraction based on RGB color space and HSV color space were studied for the classification and counting of products under the condition of mixed product production, and the results of the two methods were compared. The color extraction method based on HSV color space is selected to extract the target region from the mixed product image. Secondly, the feature detection method of enamel products is studied. A fast ellipse detection method is proposed for the images collected in the production of individual products, which realizes the rapid recognition of product features. Aiming at the problems of image recognition under the condition of mixing production, this paper studies the methods of location and size detection of target area, segmentation of connected area in image, perspective transformation and so on, and realizes image recognition and product classification statistics under the condition of mixing production. Finally, the software and hardware system is designed, and the prototype system of online statistical image recognition based on Matlab is developed, which can accurately and quickly finish the statistics of enamel products on the production line.
【學(xué)位授予單位】:鄭州大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP391.41;TQ173.6
【參考文獻】
相關(guān)期刊論文 前10條
1 周觀春;史闊;郝福洋;;電氣自動化中智能化技術(shù)的運用[J];電子技術(shù)與軟件工程;2016年12期
2 張曉娟;高瑾;;計算機圖像識別技術(shù)的應(yīng)用及細節(jié)問題闡述與分析[J];電子技術(shù)與軟件工程;2016年06期
3 何遙;;人工智能在安防領(lǐng)域的發(fā)展[J];中國公共安全;2015年20期
4 周濟;;智能制造——“中國制造2025”的主攻方向[J];中國機械工程;2015年17期
5 楊向東;芮曉飛;謝穎;;基于高效Hough變換的圓柱特征檢測方法[J];清華大學(xué)學(xué)報(自然科學(xué)版);2015年08期
6 賀正楚;潘紅玉;;德國“工業(yè)4.0”與“中國制造2025”[J];長沙理工大學(xué)學(xué)報(社會科學(xué)版);2015年03期
7 張曙;;工業(yè)4.0和智能制造[J];機械設(shè)計與制造工程;2014年08期
8 李淼;楊恢先;張建波;周彤彤;譚正華;;改進二維直方圖區(qū)域劃分的閾值分割方法研究[J];光電子.激光;2013年07期
9 李興國;高煒;;基于滴水算法的驗證碼中粘連字符分割方法[J];計算機工程與應(yīng)用;2014年01期
10 吳一全;張曉杰;吳詩Zs;張國華;張生偉;于素芬;;二維直方圖θ-劃分最小誤差圖像閾值分割[J];上海交通大學(xué)學(xué)報;2012年06期
相關(guān)碩士學(xué)位論文 前8條
1 劉雪鷗;醫(yī)學(xué)圖像模式識別技術(shù)的研究及應(yīng)用[D];太原理工大學(xué);2016年
2 康健新;基于圖像的車牌識別系統(tǒng)的設(shè)計和實現(xiàn)[D];吉林大學(xué);2014年
3 葛恒赫;基于機器視覺的外螺紋表面缺陷檢測技術(shù)研究[D];重慶大學(xué);2014年
4 陳冬萍;基于光電傳感器測距的智能軟包計數(shù)系統(tǒng)[D];杭州電子科技大學(xué);2014年
5 俞U喛,
本文編號:2415872
本文鏈接:http://sikaile.net/kejilunwen/huaxuehuagong/2415872.html