天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 化學(xué)工程論文 >

壓缸切向剖分式超高壓模具的研究

發(fā)布時間:2018-10-05 20:10
【摘要】:隨著現(xiàn)代科技的飛速發(fā)展,廣泛應(yīng)用于工業(yè)生產(chǎn)和科學(xué)研究中的超高壓設(shè)備在高壓技術(shù)方面發(fā)揮著越來越重要的作用。作為超高壓設(shè)備的核心部件,超高壓模具一直存在著兩個方面的發(fā)展需求,一方面是盡可能獲得更高的壓力,另一方面是提供盡可能大的腔體容積。模具大型化是現(xiàn)代超高壓設(shè)備發(fā)展的必然要求,因其不僅僅表現(xiàn)為可以提高合成產(chǎn)品的產(chǎn)量,更重要的是可以提高產(chǎn)品的質(zhì)量。然而,在現(xiàn)有的技術(shù)下,設(shè)備大型化時其零件的尺寸也成倍增大,這將導(dǎo)致大尺寸的硬質(zhì)合金零件的成本極高、制造難度大、質(zhì)量難以得到保證,并且模具的極限承載能力也有所降低;诖,研究了具有剖分式壓缸的超高壓模具,此結(jié)構(gòu)不僅能降低壓缸結(jié)構(gòu)的受力,而且可以顯著減小零件的尺寸。在保證模具承載能力的前提下,擴(kuò)大腔體容積,使結(jié)構(gòu)易于大型化應(yīng)用。剖分式結(jié)構(gòu)具有兩種剖分形式:徑向剖分和切向剖分。在極限承載能力方面,切向剖分式壓缸具有顯著的優(yōu)勢。本文通過數(shù)值模擬對壓缸切向剖分式超高壓模具進(jìn)行一系列的研究和優(yōu)化設(shè)計(jì),為剖分式超高壓模具的設(shè)計(jì)制造和實(shí)際應(yīng)用提供一定的理論依據(jù)和科學(xué)參考。本文研究的主要內(nèi)容和結(jié)論如下:1.探討具有剖分式壓缸的超高壓模具的設(shè)計(jì)原理對超高壓模具中的硬質(zhì)合金壓缸進(jìn)行剖分,能夠消除傳統(tǒng)年輪式模具的周向拉應(yīng)力過大的缺點(diǎn),并且可以減小壓缸零件的尺寸。有兩種形式:徑向剖分是剖分面沿著壓缸的半徑方向進(jìn)行剖分;切向剖分是一種全新的剖分形式,其剖分面垂直于壓缸的半徑方向,是沿著內(nèi)腔的切線方向進(jìn)行剖分。對剖分式模具進(jìn)行相關(guān)的理論分析,推導(dǎo)出相關(guān)參數(shù)的計(jì)算方法和設(shè)計(jì)原則,為模具的初步設(shè)計(jì)提供理論依據(jù)。2.超高壓模具的有限元建模采用數(shù)值模擬軟件對超高壓模具進(jìn)行有限元建模。對年輪式超高壓模具進(jìn)行數(shù)值模擬,比較模具在預(yù)緊狀態(tài)和工作狀態(tài)兩種情況下的應(yīng)力分布情況,分析壓缸和支撐環(huán)的應(yīng)力分布特點(diǎn),結(jié)果表明壓缸內(nèi)壁上的周向拉應(yīng)力是導(dǎo)致模具失效的主要原因。3.剖分式結(jié)構(gòu)與年輪式結(jié)構(gòu)的比較和分析分析和比較年輪式壓缸、徑向剖分式壓缸和切向剖分式壓缸的受力情況。結(jié)果表明:在相同的載荷下,三種結(jié)構(gòu)的受力依次減小;徑向剖分式結(jié)構(gòu)能夠顯著減小周向拉應(yīng)力;切向剖分式結(jié)構(gòu)可以完全消除拉應(yīng)力,并產(chǎn)生周向壓應(yīng)力;由于相鄰切向剖分塊之間存在相互擠壓和摩擦作用,這種相互作用可以自協(xié)調(diào)和均勻化壓缸的應(yīng)力分布,進(jìn)而使材料性能得到充分利用,并提高壓缸的承載能力。此外,工作狀態(tài)下,切向剖分式壓缸為三向受壓的應(yīng)力狀態(tài),這對硬質(zhì)合金材料非常有利。極限壓力測試實(shí)驗(yàn)表明,模具破裂時三種結(jié)構(gòu)的腔內(nèi)名義壓力分別為5.75GPa、7.27GPa、8.39GPa。4.剖分塊數(shù)對剖分式模具的影響數(shù)值模擬的結(jié)果顯示,對于徑向剖分式結(jié)構(gòu),隨著剖分塊數(shù)增多,壓缸的受力并不會發(fā)生顯著變化;對于切向剖分式結(jié)構(gòu),剖分塊數(shù)增多,壓缸的受力相應(yīng)地減小,應(yīng)力分布趨于均勻,極限承載能力提高。從多個角度討論壓缸剖分塊數(shù)的選取原則,可概括為:壓缸的尺寸較小時宜選用較少的剖分塊數(shù),壓缸的尺寸較大時宜選用較多的剖分塊數(shù),并且當(dāng)剖分塊的外輪廓接近規(guī)則形狀時,其受力更合理,應(yīng)力分布更加均勻,承受載荷、抵抗沖擊、防止脆斷的能力更強(qiáng)。5.切向剖分式壓缸的結(jié)構(gòu)優(yōu)化設(shè)計(jì)對切向剖分式壓缸的關(guān)鍵幾何參數(shù)進(jìn)行優(yōu)化設(shè)計(jì)。分析和比較壓缸的高徑比、厚度比、高度比和半錐角對結(jié)構(gòu)受力的影響,并得到在一定條件下的各參數(shù)的最佳優(yōu)化值。討論剖分面上的摩擦系數(shù)對壓缸工作的影響,結(jié)果表明相鄰剖分塊之間的相互作用存在一個合理的區(qū)間,這種作用過小或者過大都會對壓缸受力產(chǎn)生不利的影響。6.采用剖分式結(jié)構(gòu)設(shè)計(jì)大腔體超高壓模具基于超高壓設(shè)備大型化的發(fā)展趨勢,在模具能夠承受較高極限壓力的條件下,嘗試設(shè)計(jì)具有大樣品腔容積的超高壓模具。采用剖分式壓缸結(jié)構(gòu)來減小硬質(zhì)合金零件的尺寸,降低制造難度和成本,提高其材料質(zhì)量,并改善壓缸結(jié)構(gòu)的受力。樣品腔直徑為?80mm,硬質(zhì)合金壓缸采用兩層剖分式結(jié)構(gòu),內(nèi)層為切向剖分式結(jié)構(gòu),外層為徑向剖分式結(jié)構(gòu),此方案不僅能顯著減小單件硬質(zhì)合金零件的尺寸,而且能夠提高模具的極限承載能力,進(jìn)而使這種大尺寸壓缸可以承受7GPa以上的工作載荷。對于壓缸外的預(yù)應(yīng)力保護(hù),可采用多層組合支撐環(huán)式預(yù)緊或鋼絲纏繞式預(yù)緊,其中纏繞式預(yù)緊結(jié)構(gòu)更加合理,可以顯著減小模具的總尺寸,并降低模具的制造成本和裝配難度。
[Abstract]:With the rapid development of modern science and technology, ultra-high pressure equipment widely used in industrial production and scientific research plays an increasingly important role in high-voltage technology. As the core part of ultra-high pressure equipment, the ultra-high pressure mould always has two development demands, on the one hand, the higher pressure can be obtained as far as possible, and on the other hand, it provides as large cavity volume as possible. The enlargement of the mould is the inevitable requirement of the development of modern ultra-high pressure equipment, because it not only shows that it can improve the yield of the synthetic product, but also can improve the quality of the product. However, in the prior art, the size of the parts of the large-sized hard alloy parts increases exponentially, which results in a high cost of a large-sized hard alloy part, a large manufacturing difficulty, a high quality, and a reduction in the ultimate bearing capacity of the mold. Based on this, the ultra-high pressure die with split pressure cylinder is studied, which not only can reduce the stress of the cylinder structure, but also can reduce the size of the part. Under the premise of ensuring the carrying capacity of the mould, the volume of the cavity is enlarged, and the structure is easy to be enlarged and applied. The split structure has two sections: radial split and tangential split. In terms of ultimate load-carrying capacity, the tangential split-type pressure cylinder has a significant advantage. In this paper, a series of research and optimization design is carried out on the split-section ultra-high pressure mould by numerical simulation, which provides theoretical basis and scientific reference for the design and manufacture of split high-pressure mould and practical application. The main contents and conclusions of this paper are as follows: 1. The design principle of the ultra-high pressure die with split-type pressure cylinder is discussed, which can eliminate the defect that the circumferential tensile stress of the traditional annual wheel die is too large, and can reduce the size of the pressure cylinder part. There are two forms: the radial split section is the section plane section along the radius direction of the pressure cylinder; the tangential section is a completely new section form, and the section plane is perpendicular to the radius direction of the pressure cylinder and is split along the tangential direction of the inner cavity. The relevant theoretical analysis of split mould is carried out, the calculation method and design principle of relevant parameters are deduced, and the theoretical basis is provided for the preliminary design of mould. The finite element modeling of ultra-high pressure mould adopts numerical simulation software to model the ultra-high pressure mould. The stress distribution of the die in two cases of pre-tightening and working condition is compared by numerical simulation. The stress distribution characteristics of the pressure cylinder and the supporting ring are analyzed. The results show that the circumferential tensile stress on the cylinder wall is the main cause of die failure. Comparison and analysis of split structure and annual wheel structure analysis and comparison year wheel pressure cylinder, radial split pressure cylinder and tangential split type pressure cylinder are analyzed. The results show that under the same load, the stress of the three structures decreases sequentially; the radial split structure can significantly reduce the circumferential tensile stress; the tangential split structure can completely eliminate tensile stress and generate circumferential compressive stress; Due to the mutual squeezing and friction action between adjacent cutting blocks, the interaction can self-coordinate and uniformly distribute the stress distribution of the pressure cylinder, so that the performance of the material is fully utilized, and the bearing capacity of the pressure cylinder is improved. In addition, under the working condition, the tangential split-type pressure cylinder is the stress state of three-way compression, which is very beneficial to the cemented carbide material. The experimental results show that the nominal pressure in the cavity of three structures is 5. 75GPa, 7. 27GPa, 8. 39GPa, respectively. The numerical simulation results show that, with the increase of the number of split blocks, the stress of the pressure cylinder does not change significantly with the increase of the number of split blocks, and the force of the cylinder is correspondingly reduced for the tangential split structure. The stress distribution tends to be uniform and the ultimate bearing capacity increases. The selection principle of dividing block number of pressure cylinder is discussed from a plurality of angles, which can be summarized as follows: the size of the pressure cylinder is smaller than that of the small block number, the size of the pressure cylinder is larger, the number of sectional blocks is selected, and when the outer contour of the split block is close to the regular shape, the pressure cylinder has more reasonable stress, The stress distribution is more uniform, bearing load, resistance to impact, and the ability to prevent brittle fracture is stronger. Optimum design of the key geometric parameters of the tangential split-type pressure cylinder is designed by the structural optimization design of the tangential split-type pressure cylinder. The influence of the high-diameter ratio, the thickness ratio, the height ratio and the half-cone angle on the force of the structure are analyzed and compared, and the optimum optimum values of the parameters under certain conditions are obtained. The influence of friction coefficient on the working of pressure cylinder is discussed. The results show that there is a reasonable interval in the interaction between adjacent sections. Based on the development trend of the large-cavity ultra-high pressure die based on the large-scale expansion of ultra-high pressure equipment, the ultra-high pressure die with large sample cavity volume can be designed under the condition that the die can withstand higher extreme pressure. the size of the hard alloy part is reduced by adopting the split type pressure cylinder structure, the manufacturing difficulty and the cost are reduced, the material quality is improved, and the stress of the pressure cylinder structure is improved. The diameter of the sample chamber is? 80mm, the hard alloy pressure cylinder adopts a two-layer split structure, the inner layer is a tangential split structure, the outer layer is a radial split structure, the scheme can not only remarkably reduce the size of the single-piece hard alloy part, but also can improve the ultimate bearing capacity of the mould, so that the large-sized pressure cylinder can bear the working load of more than 7GPa. The multi-layer combined support ring type pre-tightening or steel wire winding type pre-tightening can be adopted for the pre-stress protection outside the pressure cylinder, wherein the winding type pre-tightening structure is more reasonable, the overall size of the die can be obviously reduced, and the manufacturing cost and the assembly difficulty of the die are reduced.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2016
【分類號】:TQ051.3;TG76

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 蔡學(xué)熙;剖分式天輪受力分析[J];化工礦山技術(shù);1986年03期

2 蔣黎安;手扶拖拉機(jī)剖分式箱體的加工[J];拖拉機(jī);1986年02期

3 閻德琦 ,梁應(yīng)彪;剖分式受拉連桿的應(yīng)力、應(yīng)變分析(有限單元法)[J];太原重型機(jī)械學(xué)院學(xué)報(bào);1987年S1期

4 金元林;;剖分式大齒輪定位銷孔的加工[J];機(jī)械工藝師;1992年07期

5 韓光欽;剖分式卷揚(yáng)機(jī)的正確安裝[J];礦山機(jī)械;1995年11期

6 鐘昌彬;;剖分式圓柱軸承損傷因素分析與控制[J];冶金叢刊;2009年02期

7 楊鐘勝;;大型機(jī)床剖分式動壓軸承的修理工藝及常見故障[J];機(jī)械制造;1989年10期

8 趙朋;鬲雪艾;胡娟;劉永新;;剖分式薄壁銅套的加工方法[J];金屬加工(冷加工);2009年11期

9 張園;楊啟明;;一種新型釜用剖分式機(jī)械密封裝置設(shè)計(jì)[J];化工機(jī)械;2009年02期

10 肖輝進(jìn);剖分式缸體加工工藝性分析[J];機(jī)械工人.冷加工;2003年12期

相關(guān)會議論文 前1條

1 陳傳兵;劉業(yè)新;;剖分式油封在生產(chǎn)中的應(yīng)用[A];2007年中小高爐煉鐵學(xué)術(shù)年會論文集[C];2007年

相關(guān)博士學(xué)位論文 前2條

1 楊云飛;壓缸切向剖分式超高壓模具的研究[D];吉林大學(xué);2016年

2 劉志衛(wèi);多層交錯剖分式超高壓模具設(shè)計(jì)及其數(shù)值模擬[D];吉林大學(xué);2014年

相關(guān)碩士學(xué)位論文 前3條

1 陶凱;螺旋槽端面剖分式機(jī)械密封性能研究[D];南京林業(yè)大學(xué);2014年

2 陳碧鳳;反應(yīng)釜用剖分式機(jī)械密封機(jī)理分析及設(shè)計(jì)[D];西南石油大學(xué);2007年

3 常寶華;ZP495型轉(zhuǎn)盤錐齒圈剖分式聯(lián)接設(shè)計(jì)與分析[D];蘭州理工大學(xué);2014年

,

本文編號:2254714

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/huaxuehuagong/2254714.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶14afb***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com