Na摻雜氧化鋅一維納米棒陣列的制備和光電性能研究
[Abstract]:Zn O is a class II-VI semiconductor material with direct band gap and wide band gap. The band gap width is 3.37 e V at room temperature and the exciton binding energy is as high as 60 me V. It shows great potential for applications in ultraviolet, blue, green light emitting diodes, lasers and ultraviolet detectors. In recent years, with the development of material preparation technology and nano-technology, more and more researches on p-type Zn O doping have been carried out. Moreover, theoretical calculation and experimental verification show that both real V-group elements (N, P, As, Sb) and I-group elements (Li, Na, K, Cu, Ag, Au) can be used as acceptor doping elements of p-type Zn O. The preparation and photoelectric properties of one-dimensional Zn O nano-materials and p-type Na-doped Zn O nanorods are mainly studied in this paper, which are divided into seven chapters. In the first chapter, the concept of one-dimensional nano-materials, the basic properties and preparation methods of Zn O nano-materials, and the progress of p-type doping and application of one-dimensional Zn O nano-arrays are introduced. In the second chapter, the synthesis methods and characterization of one-dimensional Zn O nanorod arrays are introduced. In the third chapter, various Zn O nanostructures prepared from different zinc materials are discussed. On this basis, quasi-one-dimensional Zn O nanorod arrays are synthesized by buffer layer technology, and their growth mechanism is analyzed. In the fourth chapter, the enhanced Zn O nanorod field is introduced. Chapters 5 and 6 introduce the preparation and properties of p-type Na-doped Zn O nanorods. Chapter 7 is the conclusion. The main achievements of this paper are as follows: (1) One-dimensional Zn O nanorod arrays were fabricated on Si substrates by chemical vapor deposition (CVD) with the aid of buffer layer technology. The results show that the optimum thickness of buffer layer is about 50 nm. This lays the foundation for the growth of Na-doped Zn O nanorod arrays. According to TEM analysis of cross-section of Zn O nanorods, a transition layer is found between Zn O nanorods and buffer layer. Zn O nanorods grow preferentially along the C axis, so the Zn O nanorods grow approximately perpendicular to the substrate and are arranged in one-dimensional arrays. (2) A scheme to enhance the field emission performance of one-dimensional Zn O nanorods is explored and studied: combining with plasma etching reduction. The top diameter of small nanorods and Al N thin films modified Zn O nanorods can effectively reduce the field emission opening and threshold electric field, and enhance the field emission current density. (3) P-type Na-doped Zn O (p-Zn O:Na) nanorods were successfully prepared by chemical vapor deposition. XRD, XPS and TEM characterization showed that Na-doped Zn O formed NaZn O acceptor. Hall effect measurements show that Zn O nanorods doped with Na between 1.2 at.% and 2.1 at.% are p-type semiconductors with a hole concentration of about 1015 cm-3. Low-temperature photoluminescence spectroscopy and voltammetric properties measurements further prove the p-type conductivity of Na-doped Zn O nanorods. Na-doped Zn O nanorods were annealed in nitrogen atmosphere at a rapid heating rate. The Na-doped Zn O nanorods were heated in oxygen atmosphere because of the formation of NaZn in the activation gap Na, which maximized the hole concentration from 3.4 x 1015 cm-3 to 1.2 x 1016 cm-3. P-type Na-doped Zn O nanorods were prepared by thermal diffusion method. The surface of Zn O nanorods was spin-coated with Na-containing precursor solution and then heat-treated at high temperature. Although photoelectron spectroscopy analysis showed that Na was doped into Zn O nanorods for thermal diffusion at 900 C. The highest content was 0.9 at.%. However, Hall test showed that the sample exhibited weak p-type conductivity with a hole concentration of ~1014 cm-3. (5) The p-Zn O:Na/n-AZO homojunction was prepared and studied based on p-type Na-doped Zn O nanorods. The Hall test of Na-doped Zn O nanorods and the voltammetric properties of the homojunction devices confirmed the Na-doped Zn O nanorods. It is p conductive and the opening voltage is about 0.5 V..
【學(xué)位授予單位】:華南理工大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:TB383.1;TQ132.41
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王懷建;;電感耦合等離子體原子發(fā)射光譜法測量堿金屬K、Na的分析[J];化學(xué)工程與裝備;2013年04期
2 富陽;密封介質(zhì)4010NA的氣相色譜分析[J];石油與天然氣化工;1996年01期
3 那平;張帆;李艷妮;;水化Na-蒙脫石和Na/Mg-蒙脫石的分子動(dòng)力學(xué)模擬[J];物理化學(xué)學(xué)報(bào);2006年09期
4 厲英;張麗華;姜茂發(fā);;NaCo_2O_4及其Na位摻雜熱電材料的制備研究[J];材料科學(xué)與工藝;2008年03期
5 姜向敏;杜萍;徐云根;張迪;龔國清;尤啟冬;;4-[4-(2,3,4-三甲氧基芐基)哌嗪-1-基甲基]苯甲酰胍類化合物的合成及其Na~+/H~+交換器1抑制活性[J];有機(jī)化學(xué);2008年12期
6 王定國,郭謂;鋁—硅共晶活塞合金的Na、P變質(zhì)[J];內(nèi)燃機(jī)配件;2000年05期
7 鄭展;陳凌翔;葉志鎮(zhèn);;Na摻雜含量對ZnO:Na_x薄膜結(jié)構(gòu)和光電性能的影響[J];材料科學(xué)與工程學(xué)報(bào);2013年01期
8 黃俊;李春;陳詠梅;韓銳;;4010NA接枝聚異戊二烯大分子防老劑的制備及在天然橡膠中的抗老化性能[J];合成橡膠工業(yè);2013年05期
9 ;新型高精度高性能線切割放電加工機(jī)——三菱NA系列[J];模具制造;2009年07期
10 楊歡;;新型線切割放電加工機(jī)——三菱NA系列[J];金屬加工(冷加工);2009年21期
相關(guān)會(huì)議論文 前10條
1 高永生;王鎖民;鄭文菊;任繼周;張承烈;;不同類型抗鹽植物K~+、Na~+選擇性的研究[A];中國植物生理學(xué)會(huì)全國學(xué)術(shù)年會(huì)暨成立40周年慶祝大會(huì)學(xué)術(shù)論文摘要匯編[C];2003年
2 王志春;楊福;梁正偉;陳淵;;鹽堿脅迫下水稻體內(nèi)Na~+、K~+響應(yīng)[A];2005年全國植物逆境生理與分子生物學(xué)研討會(huì)論文摘要匯編[C];2005年
3 王化波;劉冬成;張愛民;;小麥質(zhì)膜Na~+/ H~+逆向轉(zhuǎn)運(yùn)體基因的分離[A];中國的遺傳學(xué)研究——中國遺傳學(xué)會(huì)第七次代表大會(huì)暨學(xué)術(shù)討論會(huì)論文摘要匯編[C];2003年
4 段江燕;張金紅;;番茄堿對人紅細(xì)胞膜Na~+-K~+-ATPase活性影響的研究[A];2004年北方七省市植物學(xué)年會(huì)論文集[C];2004年
5 ;Na釭ve Bayes Ensemble Learning Based on Oracle Selection[A];2009中國控制與決策會(huì)議論文集(1)[C];2009年
6 張昱瑩;范橋輝;吳王鎖;;U(Ⅵ)在Na長石上的吸附行為研究[A];甘肅省化學(xué)會(huì)第二十七屆年會(huì)暨第九屆甘肅省中學(xué)化學(xué)教學(xué)經(jīng)驗(yàn)交流會(huì)論文摘要集[C];2011年
7 李京艷;崔景秋;馮憑;;NA干擾技術(shù)及其在2型糖尿病中的應(yīng)用[A];中華醫(yī)學(xué)會(huì)第12次全國內(nèi)科學(xué)術(shù)會(huì)議論文匯編[C];2009年
8 錢玉寶;;除鹽系統(tǒng)“漏Na~+”對離子交換的影響及其對策[A];中國化工學(xué)會(huì)2005年石油化工學(xué)術(shù)年會(huì)論文集[C];2005年
9 孫健;王美娟;丁明全;鄧澍榮;陳少良;;鹽脅迫下胡楊調(diào)控細(xì)胞內(nèi)K~+/Na~+平衡的生理和信號(hào)機(jī)制[A];第六屆中國植物逆境生理學(xué)與分子生物學(xué)學(xué)術(shù)研討會(huì)論文摘要匯編[C];2010年
10 高維緯;臧廣悅;;優(yōu)秀短道速滑運(yùn)動(dòng)員紅細(xì)胞Na~+,K~+-ATP酶的活性特征[A];2002年第9屆全國運(yùn)動(dòng)醫(yī)學(xué)學(xué)術(shù)會(huì)議論文摘要匯編[C];2002年
相關(guān)重要報(bào)紙文章 前1條
1 商報(bào)記者 渠競帆;NA小說童書出版商的下一個(gè)熱點(diǎn)[N];中國圖書商報(bào);2013年
相關(guān)博士學(xué)位論文 前10條
1 葉志祥;Na摻雜氧化鋅一維納米棒陣列的制備和光電性能研究[D];華南理工大學(xué);2016年
2 殷倩倩;HIV-1血漿RNA與前病毒DNA準(zhǔn)種變異的比較和吡啶酮化合物抗HIV-1活性的研究[D];中國疾病預(yù)防控制中心;2016年
3 許海霞;小麥Na~+/H~+逆轉(zhuǎn)運(yùn)蛋白的功能分析[D];河南農(nóng)業(yè)大學(xué);2009年
4 吳長艾;棉花液泡型Na~+/H~+逆向運(yùn)轉(zhuǎn)體基因的克隆、功能鑒定及其在耐鹽性中的重要作用[D];山東農(nóng)業(yè)大學(xué);2004年
5 陸俊羽;Na~+/H~+交換器-1核酶對缺氧大鼠肺動(dòng)脈平滑肌細(xì)胞凋亡及凋亡相關(guān)基因表達(dá)的影響[D];第三軍醫(yī)大學(xué);2003年
6 喬衛(wèi)華;長穗偃麥草Na~+/H~+反向轉(zhuǎn)運(yùn)蛋白基因的分離與功能分析[D];山東農(nóng)業(yè)大學(xué);2006年
7 葛文琦;半導(dǎo)體泵浦的高功率Yb,Na:CaF_2激光器特性的研究[D];天津大學(xué);2011年
8 焦麗燕;血漿RNA和PBMCs DNA HIV-1耐藥準(zhǔn)種多態(tài)性和分子進(jìn)化研究[D];中國人民解放軍軍事醫(yī)學(xué)科學(xué)院;2011年
9 霍紹新;BiFeO_3與ANbO_3(A=K,,Na,Li)固溶體陶瓷的多鐵特性及磁電耦合性質(zhì)研究[D];華中科技大學(xué);2012年
10 宋濤;Na~+/H~+交換蛋白1抑制劑抗糖基化終末產(chǎn)物所致內(nèi)皮損傷的作用及機(jī)制研究[D];中南大學(xué);2007年
相關(guān)碩士學(xué)位論文 前10條
1 龔明星;神經(jīng)酰胺分別與F~-、Na~+相互作用的量子化學(xué)研究[D];山西醫(yī)科大學(xué);2015年
2 黨國舉;基于Na-β-Al_2O_3陶瓷隔膜熔融電解法制備高純金屬納[D];上海應(yīng)用技術(shù)學(xué)院;2015年
3 趙常玉;Na在霸王和擬南芥響應(yīng)干旱中的作用比較研究[D];蘭州大學(xué);2012年
4 劉晨;Na在荒漠植物霸王響應(yīng)干旱中的元素特征研究[D];蘭州大學(xué);2012年
5 姚磊;日糧營養(yǎng)水平對山羊前胃上皮Na~+/H~+交換蛋白及氨轉(zhuǎn)運(yùn)蛋白表達(dá)的影響[D];南京農(nóng)業(yè)大學(xué);2014年
6 劉冬冬;鈉離子電池正極材料Na_(0.44)MnO_2的制備工藝和電化學(xué)特性[D];太原理工大學(xué);2016年
7 楊洪兵;小麥拒Na~+機(jī)理的研究[D];山東師范大學(xué);2001年
8 郭慶水;木欖Na~+/H~+逆向運(yùn)輸?shù)鞍谆虻目寺D];海南大學(xué);2010年
9 馬淑杰;Na~+對干旱脅迫下棉花生長及適應(yīng)性的調(diào)節(jié)作用[D];魯東大學(xué);2015年
10 滕新霞;水稻液泡膜Na~+/H~+逆向轉(zhuǎn)運(yùn)蛋白基因OsNHX2的功能分析[D];南京農(nóng)業(yè)大學(xué);2008年
本文編號(hào):2238040
本文鏈接:http://sikaile.net/kejilunwen/huaxuehuagong/2238040.html