天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

中溫固體氧化物燃料電池陰極和電解質(zhì)材料的性能研究

發(fā)布時間:2018-09-09 18:44
【摘要】:固體氧化物燃料電池(SOFC)是一種通過電化學(xué)反應(yīng)將化學(xué)能直接轉(zhuǎn)化為電能的電化學(xué)裝置,具有能量轉(zhuǎn)換率高、燃料適應(yīng)性強和環(huán)境友好等優(yōu)點。傳統(tǒng)的高溫SOFC需要在1000oC左右工作,如此高的操作溫度會導(dǎo)致嚴重的界面反應(yīng)和電極燒結(jié)退化等問題,因此將工作溫度降至中溫(500-800oC)是目前SOFC發(fā)展的大勢所趨。但是,電解質(zhì)的歐姆電阻、電極(特別是陰極)的界面極化電阻會隨著SOFC運行溫度的降低而顯著增大,嚴重制約其發(fā)展。因此,必須加快開發(fā)各種新型的陰極和電解質(zhì)材料,從而加速SOFC的實用化進程。本論文正是基于這一點,對SOFC的新型陰極和電解質(zhì)材料展開深入探索和研究。本論文緊緊圍繞這兩個方面開展工作,一方面從開發(fā)高催化活性、與相鄰材料有良好的相容性和穩(wěn)定性,適合作為中溫SOFC的陰極材料入手,在深入研究新型陰極材料的基本物化性能的基礎(chǔ)上,成功將其應(yīng)用于中溫SOFC,并取得了較好的電池性能。另一方面,則是通過二價和三價離子共摻雜對氧化鈰基電解質(zhì)的性能進行優(yōu)化,系統(tǒng)研究共摻雜對氧化鈰基電解質(zhì)的燒結(jié)性能、氧空位濃度和離子電導(dǎo)率等性能的影響規(guī)律,并將其組裝成單電池,其單電池在中溫條件下也展示了良好的功率輸出和開路電壓。首先,考慮到Ba Bi0.05Co0.8Nb0.15O3-δ(BBCN)具有優(yōu)異的氧透過性能,這對其作為SOFC陰極材料是非常有利的,因此采用固相法制備了立方鈣鈦礦結(jié)構(gòu)的BBCN及其復(fù)合陰極材料,考察其作為中溫SOFC陰極的可行性。XRD分析表明BBCN陰極與Sm0.2Ce0.8O1.9(SDC)電解質(zhì)具有良好的化學(xué)相容性。通過XPS結(jié)果表明BBCN中各金屬離子的氧化態(tài)為Co4+/Co3+、Bi3+、Ba2+和Nb5+,其中Co4+/3+混合價態(tài)的存在對陰極的電導(dǎo)率和電化學(xué)性能起著關(guān)鍵作用。BBCN陰極在100-800oC溫度范圍內(nèi)經(jīng)歷了半導(dǎo)體到金屬導(dǎo)電機制的轉(zhuǎn)變。其在30-850oC溫度范圍內(nèi)的平均熱膨脹系數(shù)(TEC)為19.60×10-6K-1。采用絲網(wǎng)印刷法制備了BBCN/SDC/BBCN對稱電池和Ni O-SDC/SDC/BBCN電解質(zhì)支撐型單電池,BBCN的極化阻抗(Rp)和功率密度在800oC時分別為0.047Ωcm2和507 m W cm-2。為了進一步改善BBCN陰極的性能,我們制備了BBCN-x SDC復(fù)合陰極,并確定SDC的最佳復(fù)合比例為50%,在800oC時,以BBCN-50SDC為陰極的單電池功率密度為596 m W cm-2。單電池性能測試表明,電解質(zhì)離子相的復(fù)合是進一步提高BBCN陰極性能的有效手段。隨后,為了降低Co基陰極材料的熱膨脹系數(shù)和成本,我們采用EDTA-檸檬酸聯(lián)合絡(luò)合法制備了無鈷基雙鈣鈦礦陰極Ln Ba0.5Sr0.5CuB2O5+δ(Ln=Pr,Nd;簡稱:PBSC和NBSC)。XRD研究表明,PBSC和NBSC為四方結(jié)構(gòu)。XPS結(jié)果表明PBSC和NBSC樣品中各金屬離子化合價態(tài)為Pr4+/Pr3+、Nd3+、Ba2+、Sr2+和Cu2+/Cu+,過渡族金屬離子混合價態(tài)的存在有利于激發(fā)P型小極化子導(dǎo)電的載流子濃度。二者的電導(dǎo)率都在450 oC時經(jīng)歷由半導(dǎo)體導(dǎo)電到金屬導(dǎo)電機制的轉(zhuǎn)變,且PBSC的電導(dǎo)率大于NBSC。PBSC和NBSC在30-950oC溫度范圍內(nèi)的TEC分別為14.2×10-6 K-1和14.6×10-6K-1,非常接近LSGM和SDC等常用電解質(zhì)的TEC。PBSC和NBSC的Rp在800°C時分別為0.0439Ωcm2和0.0568Ωcm2。以PBSC和NBSC為陰極的LSGM電解質(zhì)(0.3 mm厚)支撐型單電池在850oC時的最大功率密度分別達到681 m W cm-2和651 m W cm-2。以PBSC為陰極的單電池比以NBSC為陰極的單電池功率密度略大,這一結(jié)果與材料的電導(dǎo)率和極化阻抗測試結(jié)果規(guī)律相一致。在K2Ni F4結(jié)構(gòu)中,Ga在B位的過量存在可以顯著提高材料的氧離子傳導(dǎo)率,因此我們采用溶膠-凝膠法制備了Pr2Ni0.75CuB0.25Ga0.05O4+δ(PNCG)陰極材料。XRD結(jié)果表明,PNCG的晶體結(jié)構(gòu)為四方晶系,說明超量的Ga進入到了Pr2Ni O4晶體結(jié)構(gòu)中。PNCG陰極和Gd0.2Ce0.8O1.9(GDC)電解質(zhì)混合粉體經(jīng)900oC燒結(jié)5 h后,雖然PNCG和GDC的衍射峰發(fā)生微小偏移,但是它們保持了各自的晶體結(jié)構(gòu),沒有第三相生成。PNCG樣品在100-850oC范圍內(nèi)的最大電導(dǎo)率值為9 S cm-1。其在30-850oC溫度區(qū)間內(nèi)的平均TEC為12.72×10-6K-1。PNCG陰極在800oC時的極化阻抗為0.105Ωcm2。以PNCG為陰極的GDC電解質(zhì)(0.3 mm厚)支撐型單電池在800°C、750°C、700°C和650°C時的功率密度分別為371,242,183和119 m W cm-2,以上研究結(jié)果表明PNCG是一種有潛力的陰極材料。在K2Ni F4結(jié)構(gòu)中,A位La、Pr共摻雜能夠提高AO巖鹽層的氧離子遷移率,因此我們制備了(Pr0.9La0.1)2(Ni0.74Cu0.21Ga0.05)O4+δ(PLNCG)陰極。XRD表明PLNCG為四方結(jié)構(gòu),空間群為I4/mmm。PLNCG的電導(dǎo)率在100-850oC溫度范圍內(nèi)經(jīng)歷了半導(dǎo)體(0T?s??)到金屬(0T?sá?)導(dǎo)電性的轉(zhuǎn)變。TGA和DTA結(jié)果表明PLNCG在整個升溫過程中沒有發(fā)生相變,具有較好的熱穩(wěn)定性。PLNCG在30-850oC溫度區(qū)間內(nèi)的平均TEC為12.45×10-6K-1,十分接近在同一溫度范圍內(nèi)的GDC電解質(zhì)的TEC(12.39×10-6K-1)。PLNCG陰極在800oC時的極化阻抗為0.037Ωcm2。GDC(0.3 mm厚)電解質(zhì)支撐型單電池在800oC時的功率密度為407 m W cm-2。PLNCG陰極取得了較好的電化學(xué)性能,更重要的是它具有與電解質(zhì)GDC幾乎相同的熱膨脹系數(shù),可以避免熱循環(huán)過程中電池組件間的分層劈裂等問題,因此PLNCG陰極可以作為中溫SOFC的候選材料。由于二價、三價離子共摻雜可以提高Ce O2基電解質(zhì)的燒結(jié)性能和離子電導(dǎo)率,因此采用甘氨酸-硝酸鹽法(GNP)制備了La3+、Sm3+、Ca2+共摻雜的Ce O2基電解質(zhì)粉體。XRD測試結(jié)果表明Ce0.8La0.03SmB0.17-xCax O2-δ(x=0.00,0.02,0.04,0.06,0.08)樣品均為立方螢石結(jié)構(gòu),在1400oC燒結(jié)10 h后晶格常數(shù)隨著摻雜量的增加呈線性增長,符合Vegard規(guī)則,說明La2O3、Sm2O3和Ca O在氧化鈰中完全固溶。拉曼測試結(jié)果表明,Ca2+摻雜濃度的增加可使Ce O2基電解質(zhì)內(nèi)的氧空位濃度逐漸增多。SEM結(jié)果表明,少量Ca的摻雜可以提高氧化鈰基電解質(zhì)的致密程度,這主要歸因于Ca離子的有效助燒結(jié)作用。阻抗測試結(jié)果表明當Ca2+的摻雜量為0.02時其離子電導(dǎo)率達到最大,在800oC時為0.0735S cm-1。單電池測試結(jié)果顯示,Ca摻雜量為0.02時其單電池輸出性能比未摻雜的Ce0.8La0.03Sm0.17O2-δ單電池輸出性能有明顯提高,且以x=0.02為電解質(zhì)的電池開路電壓最大,在700oC、650oC和600oC分別為0.863 V、0.893 V和0.906 V。以上結(jié)果表明,La3+、Sm3+、Ca2+的共摻雜效應(yīng)是存在的,但是高溫還原氣氛下Ce的還原現(xiàn)象仍然存在,因此要制備高活性的Ce O2基電解質(zhì)材料還需要更多更細致的研究工作。
[Abstract]:Solid oxide fuel cell (SOFC) is an electrochemical device that directly converts chemical energy into electrical energy by electrochemical reaction. It has the advantages of high energy conversion rate, strong fuel adaptability and environmental friendliness. However, the ohmic resistance of electrolyte and the interfacial polarization resistance of electrode (especially cathode) will increase significantly with the decrease of operating temperature of SOFC, which seriously restricts its development. This paper is based on this point to explore and study the new cathode and electrolyte materials of SOFC. This paper focuses on these two aspects of work, on the one hand, from the development of high catalytic activity, good compatibility and stability with adjacent materials, suitable for medium-temperature SOFC. Starting with the cathode materials, based on the in-depth study of the basic physical and chemical properties of the new cathode materials, the new cathode materials were successfully applied to the medium-temperature SOFC and achieved good battery performance. On the other hand, the performance of ceria-based electrolyte was optimized by Co-doping of divalent and trivalent ions, and the ceria-based electrolysis was systematically studied by co-doping. The effect of sintering properties, oxygen vacancy concentration and ionic conductivity on the performance of the batteries was studied. The single cell was assembled into a single cell. The single cell also exhibited good power output and open circuit voltage at medium temperature. Firstly, considering the excellent oxygen permeability of BaBi 0.05 Co 0.8 Nb 0.15O 3-delta (BBCN), it was considered that Ba Bi 0.05 Co 0.8 Nb 0.15O 3-delta (BBCN) was a non-SOFC cathode material. XRD analysis showed that BBCN cathode and Sm0.2Ce0.8O1.9 (SDC) electrolyte had good chemical compatibility. XPS results showed that the oxidation state of metal ions in BBCN was Co4 + / Co3 +, Bi3 +. BBCN cathode undergoes a transition from semiconductor to metal conduction mechanism in the temperature range of 100-800oC. Its average thermal expansion coefficient (TEC) in the temperature range of 30-850oC is 19.60 *10-6K-1. BBCN was prepared by screen printing method. The polarization impedance (Rp) and power density of CN/SDC/BBCN symmetrical cell and Ni-SDC/SDC/BBCN electrolyte supported single cell were 0.047_cm 2 and 507 m W cm-2 at 800 oC, respectively. To further improve the performance of BBCN cathode, BBCN-x SDC composite cathode was prepared and the optimum composite ratio of SDC was 50% at 800 oC and BBCN-50 SDC at 800 oC. The power density of the single cell for the cathode is 596 m W cm-2. The performance test of the single cell shows that the composite of the electrolyte ion phase is an effective means to further improve the performance of the BBCN cathode. Then, in order to reduce the thermal expansion coefficient and cost of the Co-based cathode material, we prepared the Co-free Perovskite Cathode Ln B by EDTA-citric acid method. XRD studies show that PBSC and NBSC are tetragonal. XPS results show that the valence states of metal ions in PBSC and NBSC samples are Pr4+/Pr3+, Nd3+, Ba2+, Sr2+ and Cu2+/Cu+. The existence of mixed valence states of transition group metal ions is favorable to excite the carrier concentration of small polaron conduction of P type. The conductivity of PBSC is higher than that of NBSC. The conductivity of PBSC and NBSC is 14.2 *10-6 K-1 and 14.6 *10-6 K-1 respectively in the temperature range of 30-950 oC. The Rp of PBSC and NBSC is very close to that of TEC. PBSC and NBSC, which are commonly used electrolytes such as LSGM and SDC. M2. The maximum power density of LSGM electrolyte (0.3 m m thick) supported single cell with PBSC and NBSC as cathode at 850 oC was 681 m W cm-2 and 651 m W cm-2, respectively. The power density of single cell with PBSC as cathode was slightly higher than that of single cell with NBSC as cathode, which was consistent with the law of material conductivity and polarization impedance measurement. Pr2Ni0.75CuB0.25Ga0.05O4+delta (PNCG) cathode materials were prepared by sol-gel method. XRD results show that the crystal structure of PNCG is tetragonal, indicating that the excess of Ga in the B position can significantly improve the oxygen ion conductivity of the materials. Although the diffraction peaks of PNCG and GDC shifted slightly after sintering for 5 h at 900oC, the mixed electrolyte powders of. 2Ce 0.8O 1.9 (GDC) retained their respective crystal structures and did not form the third phase. The maximum conductivity of PNCG samples ranged from 100 to 850oC was 9 S cm-1. The average TEC in the range of 30-850oC was 12.72 *10-6K-1.PNCG. The polarization impedance of the cathode at 800oC is 0.105_cm 2. The power densities of the GDC electrolyte (0.3 m m thick) supported single cell with PNCG cathode at 800 C, 750 C, 700 C and 650 C are 371, 242, 183 and 119 m W cm - 2, respectively. These results show that PNCG is a potential cathode material. In the structure of K2Ni F4, A-La and Pr can be co-doped. In order to improve the mobility of oxygen ions in AO rock salt beds, we have prepared (Pr0.9La0.1) 2 (Ni0.74Cu0.21Ga0.05) O4+delta (PLNCG) cathode. XRD shows that PLNCG has a tetragonal structure, and the conductivity of the space group is I4/mmm. The average TEC of PLNCG is 12.45 *10-6K-1 in the temperature range of 30-850oC, which is very close to that of GDC electrolyte (12.39 *10-6K-1) in the same temperature range. The polarization impedance of PLNCG cathode at 800oC is 0.037_cm 2.GDC (0.3 mm thick) for electrolyte supported single cell at 8.3 mm thick. The PLNCG cathode can be used as a candidate material for medium-temperature SOFC because of its good electrochemical performance at 00oC power density of 407 m W cm-2. The more important thing is that it has almost the same thermal expansion coefficient as the electrolyte GDC and can avoid the delamination splitting between cell modules during thermal cycle. Ion co-doping can improve the sintering performance and ionic conductivity of CeO_2-based electrolyte. Therefore, La_3+, Sm_3+, Ca_2+ co-doped CeO_2-based electrolyte powders were prepared by glycine-nitrate method (GNP). XRD results show that Ce_0.8La_0.03SmB_0.17-xCa_x O_2-delta (x=0.00, 0.02, 0.04, 0.06, 0.08) samples are cubic fluorite structure and sintered at 1400 oC. The lattice constant increases linearly with the increase of doping content after 10 h, which conforms to Vegard's rule. It shows that La2O3, Sm2O3 and Ca O are completely solid soluble in cerium oxide. Raman test results show that the oxygen vacancy concentration in Ce O2-based electrolyte increases gradually with the increase of Ca2+ doping concentration. SEM results show that a small amount of Ca doping can increase the concentration of cerium oxide. The densification of the electrolyte is mainly attributed to the effective sintering aid of Ca ions. The results of impedance measurement show that the ionic conductivity reaches the maximum when Ca 2+ doping is 0.02 and 0.0735S cm-1 at 800oC. The output performance of the single cell is improved obviously, and the open circuit voltage of the cell with x=0.02 as electrolyte is the highest. The results show that the co-doping effect of La3+, Sm3+, Ca2+ exists in 700oC, 650oC and 600oC, respectively, 0.863 V, 0.893 V and 0.906 V. However, the reduction of Ce still exists in high temperature reduction atmosphere, so it is necessary to prepare highly active Ce O2. More detailed research is needed for basic electrolyte materials.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2016
【分類號】:TM911.4

【相似文獻】

中國期刊全文數(shù)據(jù)庫 前10條

1 徐旭東;田長安;尹奇異;程繼海;;固體氧化物燃料電池電解質(zhì)材料的發(fā)展趨勢[J];硅酸鹽通報;2011年03期

2 魏麗,陳誦英,王琴;中溫固體氧化物燃料電池電解質(zhì)材料的研究進展[J];稀有金屬;2003年02期

3 吳國軍;李松波;;固體氧化物燃料電池鈰基電解質(zhì)的制備與表征[J];內(nèi)蒙古石油化工;2007年11期

4 史可順;;中溫固體氧化物燃料電池電解質(zhì)材料及其制備工藝的研究發(fā)展趨勢[J];硅酸鹽學(xué)報;2008年11期

5 譚智實;;可使離子導(dǎo)電率提高近1億倍的超晶格電解質(zhì)材料[J];功能材料信息;2009年01期

6 謝富丞;王誠;毛宗強;;低溫固體氧化物燃料電池的復(fù)合電解質(zhì)材料[J];中國工程科學(xué);2013年02期

7 楊天讓;趙海雷;韓載浩;盧瑤;;硅基磷灰石電解質(zhì)材料的研究進展[J];電池;2013年02期

8 陳增來;超高多孔電解質(zhì)材料[J];電子元件與材料;1991年05期

9 李勇;邵剛勤;段興龍;王天國;;固體氧化物燃料電池電解質(zhì)材料的研究進展[J];硅酸鹽通報;2006年01期

10 唐安江;關(guān)星宇;高姍姍;楊俊藝;;雙摻雜鈰基電解質(zhì)材料的研究[J];化工新型材料;2010年10期

中國重要會議論文全文數(shù)據(jù)庫 前9條

1 劉曉梅;陳晗;蘇文揮;;固體氧化物燃料電池復(fù)合電解質(zhì)的性能研究[A];2004年中國材料研討會論文摘要集[C];2004年

2 黃建軍;萬松;王凡;汝麗麗;江石壽;朱耿鋒;蕭靜;;磷灰石型硅酸鑭電解質(zhì)材料合成及其涂層制備[A];第十六屆全國等離子體科學(xué)技術(shù)會議暨第一屆全國等離子體醫(yī)學(xué)研討會會議摘要集[C];2013年

3 梁營;王世忠;吳玲麗;;鎵酸鑭基電解質(zhì)的電導(dǎo)特性及其對相應(yīng)電極的影響[A];第十二屆中國固態(tài)離子學(xué)學(xué)術(shù)會議論文集稀土專輯[C];2004年

4 張躍興;胡琳娜;彭會芬;郭振華;;新型燃料電池電解質(zhì)材料的制備及研究[A];第六屆中國功能材料及其應(yīng)用學(xué)術(shù)會議論文集(4)[C];2007年

5 劉曉梅;梁路光;陳晗;姜向前;蘇文輝;;稀土氧化物中溫電解質(zhì)的制備及性能研究[A];“加入WTO和科學(xué)技術(shù)與吉林經(jīng)濟發(fā)展——機遇·挑戰(zhàn)·責(zé)任”吉林省第二屆科學(xué)技術(shù)學(xué)術(shù)年會論文集(上)[C];2002年

6 劉榮輝;馬文會;王華;楊斌;戴永年;;LaGaO_3基電解質(zhì)材料的合成及其與新型電極材料的相容性能研究[A];中國稀土學(xué)會第一屆青年學(xué)術(shù)會議論文集[C];2005年

7 景翠;項禮;張秀榮;;溶膠-凝膠法制備Mg摻雜的磷灰石型硅酸鑭電解質(zhì)材料[A];2011中國材料研討會論文摘要集[C];2011年

8 韓敏芳;李伯濤;彭蘇萍;劉敬;;摻雜ZrO_2基復(fù)合電解質(zhì)材料性能[A];復(fù)合材料:生命、環(huán)境與高技術(shù)——第十二屆全國復(fù)合材料學(xué)術(shù)會議論文集[C];2002年

9 張鴻;王申存;李璐君;李志成;;氧化銦-稀土氧化物共摻CeO_2基導(dǎo)電電解質(zhì)材料的制備與表征[A];第六屆中國功能材料及其應(yīng)用學(xué)術(shù)會議論文集(7)[C];2007年

中國重要報紙全文數(shù)據(jù)庫 前2條

1 中國經(jīng)濟導(dǎo)報記者 劉寶亮;用3-5年時間打造中國電池行業(yè)的“巨無霸”[N];中國經(jīng)濟導(dǎo)報;2014年

2 鄧小國 記者 傅江平;TBT評議成為應(yīng)對壁壘有效手段[N];中國質(zhì)量報;2010年

中國博士學(xué)位論文全文數(shù)據(jù)庫 前10條

1 孟祥偉;中溫固體氧化物燃料電池陰極和電解質(zhì)材料的性能研究[D];吉林大學(xué);2016年

2 劉巍;固態(tài)氧離子電解質(zhì)材料的多維結(jié)構(gòu)制備與性能[D];清華大學(xué);2013年

3 田瑞芬;摻雜氧化鈰基中溫固體氧化物燃料電池電解質(zhì)材料的制備與表征[D];中國科學(xué)技術(shù)大學(xué);2009年

4 尹廣超;磷灰石結(jié)構(gòu)硅/鍺酸鑭電解質(zhì)材料的制備與性能研究[D];吉林大學(xué);2014年

5 李彬;氧化鈰基和磷灰石型硅酸鑭基電解質(zhì)材料的研究[D];清華大學(xué);2010年

6 錢婧;中低溫固體氧化物燃料電池雙層電解質(zhì)的脈沖激光制備及電化學(xué)研究[D];中國科學(xué)技術(shù)大學(xué);2014年

7 翟玉玲;摻雜LaGaO_3電解質(zhì)的制備與性能研究[D];華中科技大學(xué);2007年

8 徐丹;中溫固體氧化物燃料電池CeO_2基復(fù)合電解質(zhì)材料的制備和性能研究[D];吉林大學(xué);2008年

9 沙雪清;雙摻雜CeO_2和LaGaO_3電解質(zhì)的制備及性能研究[D];哈爾濱工業(yè)大學(xué);2007年

10 柳勇;中溫固體氧化物燃料電池電解質(zhì)及相關(guān)材料和性能的研究[D];天津大學(xué);2012年

中國碩士學(xué)位論文全文數(shù)據(jù)庫 前10條

1 范悅;(SDC/YSZ)_N超晶格電解質(zhì)的制備及性能[D];內(nèi)蒙古大學(xué);2015年

2 李羅丹;質(zhì)子型BaCe_(0.8)Sm_xY_(0.2-x)O_(3-δ)基電解質(zhì)材料的制備及其性能研究[D];南京理工大學(xué);2015年

3 時哲;含磺酸鋰聚酰胺電解質(zhì)的制備及性能研究[D];哈爾濱工業(yè)大學(xué);2015年

4 田越;新型中溫固體氧化物燃料電池電解質(zhì)材料的制備與性能研究[D];大連海事大學(xué);2016年

5 劉麗偉;Bi_2O_3/YSZ和Bi_2O_3/YbSZ電解質(zhì)的合成制備和表征[D];浙江大學(xué);2016年

6 吳國春;低溫固體氧化物燃料電池復(fù)合電解質(zhì)性能優(yōu)化[D];太原理工大學(xué);2016年

7 曹敏;中溫固體氧化物燃料電池電解質(zhì)材料的研究[D];南京航空航天大學(xué);2006年

8 張哲;固體氧化物燃料電池電解質(zhì)材料的制備與性能研究[D];中南大學(xué);2011年

9 姜曉麗;鈰鈧共摻雜鋯基電解質(zhì)材料的制備[D];內(nèi)蒙古科技大學(xué);2011年

10 李晶晶;釓摻雜氧化鈰電解質(zhì)材料的制備及電化學(xué)性能研究[D];哈爾濱工業(yè)大學(xué);2014年

,

本文編號:2233248

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/huaxuehuagong/2233248.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶130a4***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com