中溫固體氧化物燃料電池陰極和電解質(zhì)材料的性能研究
[Abstract]:Solid oxide fuel cell (SOFC) is an electrochemical device that directly converts chemical energy into electrical energy by electrochemical reaction. It has the advantages of high energy conversion rate, strong fuel adaptability and environmental friendliness. However, the ohmic resistance of electrolyte and the interfacial polarization resistance of electrode (especially cathode) will increase significantly with the decrease of operating temperature of SOFC, which seriously restricts its development. This paper is based on this point to explore and study the new cathode and electrolyte materials of SOFC. This paper focuses on these two aspects of work, on the one hand, from the development of high catalytic activity, good compatibility and stability with adjacent materials, suitable for medium-temperature SOFC. Starting with the cathode materials, based on the in-depth study of the basic physical and chemical properties of the new cathode materials, the new cathode materials were successfully applied to the medium-temperature SOFC and achieved good battery performance. On the other hand, the performance of ceria-based electrolyte was optimized by Co-doping of divalent and trivalent ions, and the ceria-based electrolysis was systematically studied by co-doping. The effect of sintering properties, oxygen vacancy concentration and ionic conductivity on the performance of the batteries was studied. The single cell was assembled into a single cell. The single cell also exhibited good power output and open circuit voltage at medium temperature. Firstly, considering the excellent oxygen permeability of BaBi 0.05 Co 0.8 Nb 0.15O 3-delta (BBCN), it was considered that Ba Bi 0.05 Co 0.8 Nb 0.15O 3-delta (BBCN) was a non-SOFC cathode material. XRD analysis showed that BBCN cathode and Sm0.2Ce0.8O1.9 (SDC) electrolyte had good chemical compatibility. XPS results showed that the oxidation state of metal ions in BBCN was Co4 + / Co3 +, Bi3 +. BBCN cathode undergoes a transition from semiconductor to metal conduction mechanism in the temperature range of 100-800oC. Its average thermal expansion coefficient (TEC) in the temperature range of 30-850oC is 19.60 *10-6K-1. BBCN was prepared by screen printing method. The polarization impedance (Rp) and power density of CN/SDC/BBCN symmetrical cell and Ni-SDC/SDC/BBCN electrolyte supported single cell were 0.047_cm 2 and 507 m W cm-2 at 800 oC, respectively. To further improve the performance of BBCN cathode, BBCN-x SDC composite cathode was prepared and the optimum composite ratio of SDC was 50% at 800 oC and BBCN-50 SDC at 800 oC. The power density of the single cell for the cathode is 596 m W cm-2. The performance test of the single cell shows that the composite of the electrolyte ion phase is an effective means to further improve the performance of the BBCN cathode. Then, in order to reduce the thermal expansion coefficient and cost of the Co-based cathode material, we prepared the Co-free Perovskite Cathode Ln B by EDTA-citric acid method. XRD studies show that PBSC and NBSC are tetragonal. XPS results show that the valence states of metal ions in PBSC and NBSC samples are Pr4+/Pr3+, Nd3+, Ba2+, Sr2+ and Cu2+/Cu+. The existence of mixed valence states of transition group metal ions is favorable to excite the carrier concentration of small polaron conduction of P type. The conductivity of PBSC is higher than that of NBSC. The conductivity of PBSC and NBSC is 14.2 *10-6 K-1 and 14.6 *10-6 K-1 respectively in the temperature range of 30-950 oC. The Rp of PBSC and NBSC is very close to that of TEC. PBSC and NBSC, which are commonly used electrolytes such as LSGM and SDC. M2. The maximum power density of LSGM electrolyte (0.3 m m thick) supported single cell with PBSC and NBSC as cathode at 850 oC was 681 m W cm-2 and 651 m W cm-2, respectively. The power density of single cell with PBSC as cathode was slightly higher than that of single cell with NBSC as cathode, which was consistent with the law of material conductivity and polarization impedance measurement. Pr2Ni0.75CuB0.25Ga0.05O4+delta (PNCG) cathode materials were prepared by sol-gel method. XRD results show that the crystal structure of PNCG is tetragonal, indicating that the excess of Ga in the B position can significantly improve the oxygen ion conductivity of the materials. Although the diffraction peaks of PNCG and GDC shifted slightly after sintering for 5 h at 900oC, the mixed electrolyte powders of. 2Ce 0.8O 1.9 (GDC) retained their respective crystal structures and did not form the third phase. The maximum conductivity of PNCG samples ranged from 100 to 850oC was 9 S cm-1. The average TEC in the range of 30-850oC was 12.72 *10-6K-1.PNCG. The polarization impedance of the cathode at 800oC is 0.105_cm 2. The power densities of the GDC electrolyte (0.3 m m thick) supported single cell with PNCG cathode at 800 C, 750 C, 700 C and 650 C are 371, 242, 183 and 119 m W cm - 2, respectively. These results show that PNCG is a potential cathode material. In the structure of K2Ni F4, A-La and Pr can be co-doped. In order to improve the mobility of oxygen ions in AO rock salt beds, we have prepared (Pr0.9La0.1) 2 (Ni0.74Cu0.21Ga0.05) O4+delta (PLNCG) cathode. XRD shows that PLNCG has a tetragonal structure, and the conductivity of the space group is I4/mmm. The average TEC of PLNCG is 12.45 *10-6K-1 in the temperature range of 30-850oC, which is very close to that of GDC electrolyte (12.39 *10-6K-1) in the same temperature range. The polarization impedance of PLNCG cathode at 800oC is 0.037_cm 2.GDC (0.3 mm thick) for electrolyte supported single cell at 8.3 mm thick. The PLNCG cathode can be used as a candidate material for medium-temperature SOFC because of its good electrochemical performance at 00oC power density of 407 m W cm-2. The more important thing is that it has almost the same thermal expansion coefficient as the electrolyte GDC and can avoid the delamination splitting between cell modules during thermal cycle. Ion co-doping can improve the sintering performance and ionic conductivity of CeO_2-based electrolyte. Therefore, La_3+, Sm_3+, Ca_2+ co-doped CeO_2-based electrolyte powders were prepared by glycine-nitrate method (GNP). XRD results show that Ce_0.8La_0.03SmB_0.17-xCa_x O_2-delta (x=0.00, 0.02, 0.04, 0.06, 0.08) samples are cubic fluorite structure and sintered at 1400 oC. The lattice constant increases linearly with the increase of doping content after 10 h, which conforms to Vegard's rule. It shows that La2O3, Sm2O3 and Ca O are completely solid soluble in cerium oxide. Raman test results show that the oxygen vacancy concentration in Ce O2-based electrolyte increases gradually with the increase of Ca2+ doping concentration. SEM results show that a small amount of Ca doping can increase the concentration of cerium oxide. The densification of the electrolyte is mainly attributed to the effective sintering aid of Ca ions. The results of impedance measurement show that the ionic conductivity reaches the maximum when Ca 2+ doping is 0.02 and 0.0735S cm-1 at 800oC. The output performance of the single cell is improved obviously, and the open circuit voltage of the cell with x=0.02 as electrolyte is the highest. The results show that the co-doping effect of La3+, Sm3+, Ca2+ exists in 700oC, 650oC and 600oC, respectively, 0.863 V, 0.893 V and 0.906 V. However, the reduction of Ce still exists in high temperature reduction atmosphere, so it is necessary to prepare highly active Ce O2. More detailed research is needed for basic electrolyte materials.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2016
【分類號】:TM911.4
【相似文獻】
中國期刊全文數(shù)據(jù)庫 前10條
1 徐旭東;田長安;尹奇異;程繼海;;固體氧化物燃料電池電解質(zhì)材料的發(fā)展趨勢[J];硅酸鹽通報;2011年03期
2 魏麗,陳誦英,王琴;中溫固體氧化物燃料電池電解質(zhì)材料的研究進展[J];稀有金屬;2003年02期
3 吳國軍;李松波;;固體氧化物燃料電池鈰基電解質(zhì)的制備與表征[J];內(nèi)蒙古石油化工;2007年11期
4 史可順;;中溫固體氧化物燃料電池電解質(zhì)材料及其制備工藝的研究發(fā)展趨勢[J];硅酸鹽學(xué)報;2008年11期
5 譚智實;;可使離子導(dǎo)電率提高近1億倍的超晶格電解質(zhì)材料[J];功能材料信息;2009年01期
6 謝富丞;王誠;毛宗強;;低溫固體氧化物燃料電池的復(fù)合電解質(zhì)材料[J];中國工程科學(xué);2013年02期
7 楊天讓;趙海雷;韓載浩;盧瑤;;硅基磷灰石電解質(zhì)材料的研究進展[J];電池;2013年02期
8 陳增來;超高多孔電解質(zhì)材料[J];電子元件與材料;1991年05期
9 李勇;邵剛勤;段興龍;王天國;;固體氧化物燃料電池電解質(zhì)材料的研究進展[J];硅酸鹽通報;2006年01期
10 唐安江;關(guān)星宇;高姍姍;楊俊藝;;雙摻雜鈰基電解質(zhì)材料的研究[J];化工新型材料;2010年10期
中國重要會議論文全文數(shù)據(jù)庫 前9條
1 劉曉梅;陳晗;蘇文揮;;固體氧化物燃料電池復(fù)合電解質(zhì)的性能研究[A];2004年中國材料研討會論文摘要集[C];2004年
2 黃建軍;萬松;王凡;汝麗麗;江石壽;朱耿鋒;蕭靜;;磷灰石型硅酸鑭電解質(zhì)材料合成及其涂層制備[A];第十六屆全國等離子體科學(xué)技術(shù)會議暨第一屆全國等離子體醫(yī)學(xué)研討會會議摘要集[C];2013年
3 梁營;王世忠;吳玲麗;;鎵酸鑭基電解質(zhì)的電導(dǎo)特性及其對相應(yīng)電極的影響[A];第十二屆中國固態(tài)離子學(xué)學(xué)術(shù)會議論文集稀土專輯[C];2004年
4 張躍興;胡琳娜;彭會芬;郭振華;;新型燃料電池電解質(zhì)材料的制備及研究[A];第六屆中國功能材料及其應(yīng)用學(xué)術(shù)會議論文集(4)[C];2007年
5 劉曉梅;梁路光;陳晗;姜向前;蘇文輝;;稀土氧化物中溫電解質(zhì)的制備及性能研究[A];“加入WTO和科學(xué)技術(shù)與吉林經(jīng)濟發(fā)展——機遇·挑戰(zhàn)·責(zé)任”吉林省第二屆科學(xué)技術(shù)學(xué)術(shù)年會論文集(上)[C];2002年
6 劉榮輝;馬文會;王華;楊斌;戴永年;;LaGaO_3基電解質(zhì)材料的合成及其與新型電極材料的相容性能研究[A];中國稀土學(xué)會第一屆青年學(xué)術(shù)會議論文集[C];2005年
7 景翠;項禮;張秀榮;;溶膠-凝膠法制備Mg摻雜的磷灰石型硅酸鑭電解質(zhì)材料[A];2011中國材料研討會論文摘要集[C];2011年
8 韓敏芳;李伯濤;彭蘇萍;劉敬;;摻雜ZrO_2基復(fù)合電解質(zhì)材料性能[A];復(fù)合材料:生命、環(huán)境與高技術(shù)——第十二屆全國復(fù)合材料學(xué)術(shù)會議論文集[C];2002年
9 張鴻;王申存;李璐君;李志成;;氧化銦-稀土氧化物共摻CeO_2基導(dǎo)電電解質(zhì)材料的制備與表征[A];第六屆中國功能材料及其應(yīng)用學(xué)術(shù)會議論文集(7)[C];2007年
中國重要報紙全文數(shù)據(jù)庫 前2條
1 中國經(jīng)濟導(dǎo)報記者 劉寶亮;用3-5年時間打造中國電池行業(yè)的“巨無霸”[N];中國經(jīng)濟導(dǎo)報;2014年
2 鄧小國 記者 傅江平;TBT評議成為應(yīng)對壁壘有效手段[N];中國質(zhì)量報;2010年
中國博士學(xué)位論文全文數(shù)據(jù)庫 前10條
1 孟祥偉;中溫固體氧化物燃料電池陰極和電解質(zhì)材料的性能研究[D];吉林大學(xué);2016年
2 劉巍;固態(tài)氧離子電解質(zhì)材料的多維結(jié)構(gòu)制備與性能[D];清華大學(xué);2013年
3 田瑞芬;摻雜氧化鈰基中溫固體氧化物燃料電池電解質(zhì)材料的制備與表征[D];中國科學(xué)技術(shù)大學(xué);2009年
4 尹廣超;磷灰石結(jié)構(gòu)硅/鍺酸鑭電解質(zhì)材料的制備與性能研究[D];吉林大學(xué);2014年
5 李彬;氧化鈰基和磷灰石型硅酸鑭基電解質(zhì)材料的研究[D];清華大學(xué);2010年
6 錢婧;中低溫固體氧化物燃料電池雙層電解質(zhì)的脈沖激光制備及電化學(xué)研究[D];中國科學(xué)技術(shù)大學(xué);2014年
7 翟玉玲;摻雜LaGaO_3電解質(zhì)的制備與性能研究[D];華中科技大學(xué);2007年
8 徐丹;中溫固體氧化物燃料電池CeO_2基復(fù)合電解質(zhì)材料的制備和性能研究[D];吉林大學(xué);2008年
9 沙雪清;雙摻雜CeO_2和LaGaO_3電解質(zhì)的制備及性能研究[D];哈爾濱工業(yè)大學(xué);2007年
10 柳勇;中溫固體氧化物燃料電池電解質(zhì)及相關(guān)材料和性能的研究[D];天津大學(xué);2012年
中國碩士學(xué)位論文全文數(shù)據(jù)庫 前10條
1 范悅;(SDC/YSZ)_N超晶格電解質(zhì)的制備及性能[D];內(nèi)蒙古大學(xué);2015年
2 李羅丹;質(zhì)子型BaCe_(0.8)Sm_xY_(0.2-x)O_(3-δ)基電解質(zhì)材料的制備及其性能研究[D];南京理工大學(xué);2015年
3 時哲;含磺酸鋰聚酰胺電解質(zhì)的制備及性能研究[D];哈爾濱工業(yè)大學(xué);2015年
4 田越;新型中溫固體氧化物燃料電池電解質(zhì)材料的制備與性能研究[D];大連海事大學(xué);2016年
5 劉麗偉;Bi_2O_3/YSZ和Bi_2O_3/YbSZ電解質(zhì)的合成制備和表征[D];浙江大學(xué);2016年
6 吳國春;低溫固體氧化物燃料電池復(fù)合電解質(zhì)性能優(yōu)化[D];太原理工大學(xué);2016年
7 曹敏;中溫固體氧化物燃料電池電解質(zhì)材料的研究[D];南京航空航天大學(xué);2006年
8 張哲;固體氧化物燃料電池電解質(zhì)材料的制備與性能研究[D];中南大學(xué);2011年
9 姜曉麗;鈰鈧共摻雜鋯基電解質(zhì)材料的制備[D];內(nèi)蒙古科技大學(xué);2011年
10 李晶晶;釓摻雜氧化鈰電解質(zhì)材料的制備及電化學(xué)性能研究[D];哈爾濱工業(yè)大學(xué);2014年
,本文編號:2233248
本文鏈接:http://sikaile.net/kejilunwen/huaxuehuagong/2233248.html