天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 化學工程論文 >

預(yù)處理調(diào)解對剩余污泥發(fā)酵液微生物電解產(chǎn)氫影響研究

發(fā)布時間:2018-08-28 08:56
【摘要】:微生物電解池(MECs)由微生物燃料電池發(fā)展而來,具備能量輸入低(與電解水產(chǎn)氫相比)、氫氣產(chǎn)率高的特點。MECs主要利用乙酸鹽產(chǎn)氫,但如何利用MECs處理實際廢物且同步獲得氫氣成為目前研究的熱點。剩余污泥的處理與處置是污水處理廠處理污水的同時急待解決的難題,傳統(tǒng)厭氧處理污泥存在的問題是周期長、碳源轉(zhuǎn)化速率慢、能源(甲烷)回收率低等。針對上述問題,提出了有效的污泥預(yù)處理方法-強化發(fā)酵產(chǎn)酸-微生物電解回收氫能的處置思路,將分別提升剩余污泥中的有機質(zhì)水解酸化效率、強化揮發(fā)酸最適底物產(chǎn)量、提高氫氣轉(zhuǎn)化回收效率,從而實現(xiàn)剩余污泥梯級利用的高效碳源轉(zhuǎn)化產(chǎn)氫新方法探索。本研究針對不同常用預(yù)處理方法制備污泥發(fā)酵液性質(zhì)分析,主要針對發(fā)酵液有機物成分優(yōu)化并確定在MECs反應(yīng)器產(chǎn)氫工藝中不同有機質(zhì)組分轉(zhuǎn)化效能。實驗結(jié)果表明,MECs反應(yīng)器利用蛋白類物質(zhì)產(chǎn)氫,在外加電壓0.8 V條件下,蛋白質(zhì)初始濃度800 mg COD/L時產(chǎn)氫率最高(0.3±0.015 ml/mg COD);發(fā)酵液中不同揮發(fā)酸組分對MECs產(chǎn)氫影響密切,丙酸積累不利于MECs反應(yīng)器產(chǎn)氫,而丁酸積累則相對有利于MECs氫氣產(chǎn)量提升。MECs處理污泥發(fā)酵液在初始p H值6.5、外加電壓0.8 V以及電導(dǎo)率為8時,MECs產(chǎn)氫率最高。對于發(fā)酵液的離子含量決定的緩沖能力和電導(dǎo)率進行分析發(fā)現(xiàn),堿預(yù)處理后產(chǎn)生的發(fā)酵液電導(dǎo)率能夠提高從而有利于MECs產(chǎn)氫效率提升;適當磷酸鹽(PBS)調(diào)節(jié)可有效的提高MECs反應(yīng)器的運行效能。對于發(fā)酵過程產(chǎn)酸帶來的酸化影響,通過酸性p H值沖擊實驗發(fā)現(xiàn),p H5的酸性沖擊會導(dǎo)致MECs產(chǎn)氫效率降低,產(chǎn)甲烷率增加。待p H恢復(fù)到中性后,MECs反應(yīng)器中的微生物在反應(yīng)器受到酸性沖擊后多樣性增加,而對于陽極菌群中胞外電子傳遞菌為優(yōu)勢菌的高效產(chǎn)氫反應(yīng)器,在去除短暫酸性沖擊后細胞色素C基因相關(guān)菌群能夠較快恢復(fù)為優(yōu)勢菌,而與碳利用相關(guān)的功能基因中降解簡單碳源功能基因變化最為顯著。通過比較熱預(yù)處理、堿預(yù)處理和熱堿聯(lián)合預(yù)處理污泥發(fā)酵液接種MECs反應(yīng)器運行效能和產(chǎn)氫效率,發(fā)現(xiàn)熱堿聯(lián)合預(yù)處理污泥發(fā)酵液各種VFAs釋放更充分,發(fā)酵液在MECs中乙酸利用率最高;污泥發(fā)酵液氫氣回收效率分析表明熱堿聯(lián)合預(yù)處理污泥發(fā)酵液聯(lián)合MECs產(chǎn)氫過程獲得氫氣回收效率最高,單位污泥氫氣產(chǎn)量34.4±4.1 m L H_2/g VSS,每日氫氣產(chǎn)量為19.3±2.3 m L H_2/d。按照不同預(yù)處理發(fā)酵液的MECs產(chǎn)氫效率的大小比較:熱堿聯(lián)合預(yù)處理熱預(yù)處理堿預(yù)處理未預(yù)處理污泥。針對MECs處理污泥發(fā)酵液產(chǎn)甲烷對MECs氫氣回收率損耗影響,提出了通過污泥預(yù)處理過程增加適量微氧曝氣形成對MECs中產(chǎn)甲烷菌有效抑制的方法,結(jié)果證明了短期曝氣有效提高MECs處理污泥發(fā)酵液回收氫氣。一方面,通過污泥預(yù)處理過程中適當微氧曝氣預(yù)處理可以提升剩余污泥水解過程的有機物釋放,結(jié)果證明了堿處理條件增加適量微氧預(yù)處理更有利于污泥發(fā)酵液中總揮發(fā)性脂肪酸(TVFAs)的積累。另一方面,MECs利用污泥發(fā)酵液產(chǎn)氫運行階段,在序批式運行過程直接采用對MECs生物膜短期(10 min)空氣暴露方式可有效抑制甲烷的產(chǎn)生,產(chǎn)氫回收率提高60%,氫氣產(chǎn)率達到1.3 m L H_2/m L反應(yīng)器/d。通過高通量測序發(fā)現(xiàn),通過微氧-熱堿聯(lián)合預(yù)處理制備剩余污泥發(fā)酵液聯(lián)合單室MECs反應(yīng)器產(chǎn)氫過程的微生物群落結(jié)構(gòu)變化以厭氧發(fā)酵菌群最為顯著,結(jié)果表明β-Proteobacteria、Legionella和Clostridium為MECs反應(yīng)器運行過程中主要的微生物菌群,其中Clostridium從啟動時的4.1%增加到產(chǎn)氫階段的19.3%,Solobacterium增加至10.5%;與微生物電極系統(tǒng)電子傳遞過程密切相關(guān)β-Proteobacteria略有降低,在反應(yīng)器產(chǎn)氫效率最高時β-Proteobacteria占21.3%。研究結(jié)果初步揭示了體系氫氣回收效率與剩余污泥發(fā)酵液聯(lián)合微生物電解產(chǎn)氫過程厭氧發(fā)酵菌群與MEC電極功能菌群的相互作用過程的內(nèi)在關(guān)聯(lián)。
[Abstract]:Microbial electrolysis cells (MECs) are developed from microbial fuel cells (MFCs), which have the characteristics of low energy input (compared with hydrogen production from electrolytic water) and high hydrogen production rate. MECs mainly use acetate to produce hydrogen. However, how to use MECs to treat real waste and obtain hydrogen simultaneously has become a hot research topic. The problems of traditional anaerobic sludge treatment are long cycle, slow carbon source conversion rate and low recovery rate of energy (methane). Aiming at these problems, an effective sludge pretreatment method-enhanced fermentation and acid production-microbial electrolysis to recover hydrogen energy is proposed, which will enhance the residual sludge separately. In this study, the characteristics of sludge fermentation broth prepared by different pretreatment methods were analyzed, and the organic components of fermentation broth were optimized and optimized. The conversion efficiency of different organic matter components in MECs reactor was determined. The experimental results showed that the hydrogen production rate of MECs was the highest when the initial concentration of protein was 800 mg COD/L under the applied voltage of 0.8 V, and different volatile acid components in fermentation broth had a close effect on the hydrogen production of MECs. Accumulation of acid was disadvantageous to hydrogen production in MECs, but accumulation of butyric acid was relatively beneficial to the increase of hydrogen production in MECs. The hydrogen production rate of MECs was the highest when initial P H value was 6.5, applied voltage was 0.8 V and conductivity was 8. The conductivity of raw fermentation broth can be improved and the hydrogen production efficiency of MECs can be improved. Proper phosphate (PBS) regulation can effectively improve the operation efficiency of MECs reactor. When P H returned to neutrality, the diversity of microorganisms in the MECs reactor increased after acid shock, while for the high-efficiency hydrogen production reactor, in which extracellular electron-transporting bacteria were the dominant bacteria, the cytochrome C gene-related bacteria could recover to the dominant bacteria quickly after removal of short acid shock, which was related to carbon utilization. Compared with thermal pretreatment, alkali pretreatment and thermo-alkali pretreatment of sludge fermentation broth inoculated with MECs reactor, the results showed that the VFAs released more fully and the acetic acid utilization rate of fermentation broth was the highest in MECs. The hydrogen recovery efficiency analysis of sludge fermentation broth showed that the hydrogen recovery efficiency of the combined pretreatment sludge fermentation broth with MECs was the highest, and the hydrogen yield per unit sludge was 34.4 +4.1 m L H_2/g VSS, and the hydrogen output per day was 19.3 +2.3 m L H_2/d. In view of the effect of methane production from sludge fermentation broth treated with MECs on the hydrogen recovery rate of MECs, a method of increasing appropriate amount of micro-oxygen aeration formation in sludge pretreatment process to effectively inhibit methanogens in MECs was proposed. The results showed that short-term aeration could effectively increase the methanogens in MECs treatment sludge. Hydrogen recovery from fermentation broth. On the one hand, the release of organic compounds in the hydrolysis process of excess sludge can be enhanced by appropriate micro-oxygen aeration pretreatment during sludge pretreatment. The results show that the accumulation of total volatile fatty acids (TVFAs) in sludge fermentation broth can be improved by adding appropriate micro-oxygen pretreatment under alkali treatment conditions. In the operation stage of hydrogen production, short-term (10 min) air exposure to MECs biofilm could effectively inhibit methane production. The recovery rate of hydrogen production increased by 60% and the hydrogen yield reached 1.3 m L H_2/m L reactor/d. Anaerobic fermentation was the most significant microbial community in the combined single-chamber MECs reactor. The results showed that beta-Proteobacteria, Legionella and Clostridium were the main microbial community during the operation of MECs reactor. Clostridium increased from 4.1% at the start-up stage to 19.3% at the hydrogen production stage, and Solobacterium increased to 19.3%. 10.5%; the beta-Proteobacteria closely related to the electron transfer process of microbial electrode system decreased slightly, and the beta-Proteobacteria accounted for 21.3% at the highest hydrogen production efficiency of the reactor. The results preliminarily revealed the anaerobic fermentation flora and the MEC electrode functional flora in the process of hydrogen recovery efficiency of the system and surplus sludge fermentation broth combined with microbial electrolysis. The internal relationship of the interaction process.
【學位授予單位】:哈爾濱工業(yè)大學
【學位級別】:博士
【學位授予年份】:2016
【分類號】:X703;TM911.45

【相似文獻】

相關(guān)期刊論文 前10條

1 盧怡,張無敵,宋洪川,李建昌,夏朝鳳;豬糞發(fā)酵產(chǎn)氫潛力的研究[J];可再生能源;2003年02期

2 蔡木林,劉俊新;利用廢水和固體廢棄物中有機質(zhì)發(fā)酵產(chǎn)氫研究進展[J];環(huán)境污染治理技術(shù)與設(shè)備;2004年06期

3 康鑄慧,王磊,鄭廣宏,周琪;微生物產(chǎn)氫研究的進展[J];工業(yè)微生物;2005年02期

4 張軍合;張全國;尤希鳳;劉振波;;環(huán)流型光生物反應(yīng)器光合產(chǎn)氫運行條件的研究[J];農(nóng)業(yè)環(huán)境科學學報;2005年06期

5 李建昌;劉士清;張無敵;官會林;尹芳;孫可偉;;發(fā)酵產(chǎn)氫面臨的問題及對策[J];可再生能源;2006年04期

6 曹東福;黃兵;張續(xù)春;;利用有機質(zhì)發(fā)酵產(chǎn)氫的影響因素與應(yīng)用前景[J];環(huán)境科學與管理;2007年04期

7 常娥;齊亞林;鄔小兵;徐惠娟;龍敏南;;產(chǎn)氫細菌Enterbacter sakazakii HP的分離及產(chǎn)氫特性[J];微生物學通報;2007年02期

8 湯桂蘭;孫振鈞;李玉英;;微生物發(fā)酵法制氫與產(chǎn)氫微生物的研究進展[J];農(nóng)業(yè)工程學報;2007年12期

9 王東陽;李永峰;任南琪;陳紅;焦安英;;新型產(chǎn)氫細菌Biohybactium R3利用乳糖進行發(fā)酵產(chǎn)氫的實驗研究[J];現(xiàn)代化工;2008年S2期

10 秦智;任南琪;李建政;;產(chǎn)氫菌的投加方式對強化發(fā)酵菌群產(chǎn)氫的影響[J];太陽能學報;2008年07期

相關(guān)會議論文 前10條

1 劉艷;黃曉婷;吳畏;;利用廚余進行厭氧發(fā)酵產(chǎn)氫的研究[A];中國環(huán)境科學學會2009年學術(shù)年會論文集(第二卷)[C];2009年

2 赫倚風;郭婕;周彩虹;張志萍;王毅;張全國;;光合產(chǎn)氫過程中微生物代謝熱實驗研究[A];高等學校工程熱物理第十九屆全國學術(shù)會議論文集[C];2013年

3 任南琪;林明;馬汐平;王愛杰;李建政;;一株厭氧高效產(chǎn)氫細菌的篩選及其耐酸性的研究[A];中國太陽能學會2001年學術(shù)會議論文摘要集[C];2001年

4 李永峰;李鵬;李建政;;高效產(chǎn)氫細菌的分離鑒定與產(chǎn)氫作用[A];2004年中國生物質(zhì)能技術(shù)與可持續(xù)發(fā)展研討會論文集[C];2004年

5 劉旭;馬春紅;李曉煜;何曉棣;甄占萍;吳哲;王立安;賈銀鎖;;利用農(nóng)林廢棄物發(fā)酵產(chǎn)氫的研究[A];植?萍紕(chuàng)新與病蟲防控專業(yè)化——中國植物保護學會2011年學術(shù)年會論文集[C];2011年

6 張全國;雷廷宙;尤希鳳;楊群發(fā);原玉豐;張軍合;;影響天然混合紅螺菌產(chǎn)氫因素的實驗研究[A];2004年中國生物質(zhì)能技術(shù)與可持續(xù)發(fā)展研討會論文集[C];2004年

7 李永峰;陳晟;史乃鑒;王遠強;;產(chǎn)氫微生物培養(yǎng)特性及其擴大培養(yǎng)的研究[A];上海市化學化工學會2007年度學術(shù)年會論文摘要集[C];2007年

8 王媛媛;張衍林;晏水平;周洪亮;李武;;兩相聯(lián)合厭氧發(fā)酵產(chǎn)氫氣—甲烷的工藝參數(shù)驗證[A];2011年中國沼氣學會學術(shù)年會暨第八屆理事會第二次會議論文集[C];2011年

9 王相晶;任南琪;李建政;張穎;陳兆波;郭婉茜;李永鋒;;影響發(fā)酵細菌B49產(chǎn)氫因子研究[A];21世紀太陽能新技術(shù)——2003年中國太陽能學會學術(shù)年會論文集[C];2003年

10 鄭國香;任南琪;鐘溢鍵;李小玲;吳川福;周湘良;;碳源、氮源及碳/氮比值對發(fā)酵產(chǎn)氫細菌RF-9產(chǎn)氫性能的影響[A];第七屆全國氫能學術(shù)會議論文集[C];2006年

相關(guān)博士學位論文 前10條

1 趙磊;嗜熱菌W16利用秸稈水解液混合糖產(chǎn)氫特性及代謝機制研究[D];哈爾濱工業(yè)大學;2015年

2 劉充;預(yù)處理調(diào)解對剩余污泥發(fā)酵液微生物電解產(chǎn)氫影響研究[D];哈爾濱工業(yè)大學;2016年

3 陳明;光合細菌利用低分子有機酸產(chǎn)氫的試驗研究[D];浙江大學;2008年

4 劉洪艷;厭氧發(fā)酵產(chǎn)氫菌篩選及產(chǎn)氫菌突變體庫構(gòu)建[D];中國科學院研究生院(海洋研究所);2010年

5 曹廣麗;高效利用玉米秸稈的產(chǎn)氫菌種及其產(chǎn)氫性能研究[D];哈爾濱工業(yè)大學;2010年

6 陳瑛;發(fā)酵產(chǎn)氫菌株與混合培養(yǎng)系統(tǒng)種群生態(tài)研究[D];哈爾濱工業(yè)大學;2007年

7 戚峰;生物質(zhì)高效水解及發(fā)酵產(chǎn)氫的機理研究[D];浙江大學;2007年

8 宋朝霞;秸稈類生物質(zhì)暗發(fā)酵產(chǎn)氫關(guān)鍵參數(shù)優(yōu)化及其機理研究[D];鄭州大學;2014年

9 牛坤;Klebsiella pneumoniae ECU-15菌株暗發(fā)酵產(chǎn)氫過程分析及其利用木質(zhì)纖維素水解液的實驗研究[D];華東理工大學;2010年

10 劉冰峰;光發(fā)酵細菌的選育及其與暗發(fā)酵細菌耦合產(chǎn)氫研究[D];哈爾濱工業(yè)大學;2010年

相關(guān)碩士學位論文 前10條

1 劉旭;產(chǎn)氫厭氧細菌的分離篩選及其產(chǎn)氫效能評價[D];河北師范大學;2011年

2 孫煌;基于納米MoS_2為催化陰極的MEC的產(chǎn)氫特性及其性能優(yōu)化[D];鄭州大學;2016年

3 何澤;不同發(fā)酵制氫工藝控制條件優(yōu)化及產(chǎn)氫效能[D];哈爾濱工業(yè)大學;2016年

4 李菁;玉米芯的預(yù)處理及其產(chǎn)氫工藝研究[D];哈爾濱工業(yè)大學;2016年

5 辛紅梅;Fe_3O_4納米顆粒對廢水厭氧發(fā)酵產(chǎn)氫的影響研究[D];哈爾濱工業(yè)大學;2016年

6 劉穎;暗發(fā)酵細菌與光發(fā)酵細菌兩步法聯(lián)合產(chǎn)氫研究[D];哈爾濱工業(yè)大學;2007年

7 韓博;產(chǎn)氫細菌Ethanoligenens harbinense R3的發(fā)酵產(chǎn)氫基質(zhì)與效能的研究[D];東北林業(yè)大學;2009年

8 安靜;光源和光譜對光合產(chǎn)氫菌群產(chǎn)氫工藝影響研究[D];河南農(nóng)業(yè)大學;2009年

9 鄧文武;外加電場輔助質(zhì)子傳遞供類球紅細菌光合產(chǎn)氫研究[D];西南大學;2010年

10 張娜;產(chǎn)氫菌的分離鑒定及產(chǎn)氫條件的優(yōu)化[D];西北大學;2010年



本文編號:2208914

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/huaxuehuagong/2208914.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶c494f***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com