天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

新型石墨烯化學(xué)修飾平臺(tái)的構(gòu)筑及其在聚合物復(fù)合材料中的應(yīng)用

發(fā)布時(shí)間:2018-08-09 20:12
【摘要】:表面修飾能夠有效改善石墨烯的溶液加工性、調(diào)節(jié)石墨烯的帶隙、賦予石墨烯特殊的功能性,為石墨烯的有效利用奠定了堅(jiān)實(shí)的基礎(chǔ)。石墨烯表面修飾發(fā)展至今,已取得了不菲的成績(jī)。美中不足的是,已報(bào)道的表面修飾實(shí)施方法絕大多數(shù)僅針對(duì)具體的單一應(yīng)用目標(biāo)而開(kāi)發(fā),較少具備實(shí)現(xiàn)多目標(biāo)任務(wù)的能力。就此現(xiàn)狀,本項(xiàng)目擬提供一種可供選擇的石墨烯表面修飾系統(tǒng)化解決方案,以實(shí)現(xiàn)石墨烯在不同場(chǎng)合下的有效利用。其總體思路是,經(jīng)由表面修飾先獲取一種類(lèi)似于氧化石墨烯(GO)或還原氧化石墨烯(rGO)的表面可再修飾石墨烯材料(modifiable graphene,mG),然后再以該材料為平臺(tái)通過(guò)二次或多次修飾實(shí)現(xiàn)期待的石墨烯表面化學(xué)再裁制。研究中,采用石墨液相剝離法制取高品質(zhì)石墨烯,mG的制取選用活性試劑-石墨烯化學(xué)修飾方法進(jìn)行。這不僅在于基于活性試劑的表面修飾方法對(duì)石墨烯結(jié)構(gòu)破壞較輕且程度可控,能夠?yàn)橹T如多功能聚合物復(fù)合材料等應(yīng)用領(lǐng)域所需的高品質(zhì)石墨烯提供制備可能,而且還在于其可通過(guò)活性試劑的選擇為石墨烯表面化學(xué)再裁制提供反應(yīng)活性點(diǎn)。其中,后者尤為本項(xiàng)目所看重。隨后,制取的mG將被用作平臺(tái)材料,經(jīng)特定的表面再修飾后獲取不同的目標(biāo)石墨烯材料(modified graphene,MG),研究mG的平臺(tái)特性;并將特殊分子設(shè)計(jì)的MG應(yīng)用到聚合物復(fù)合材料中,研究MG相對(duì)于未改性石墨烯(pristine graphene,pG)、GO/rGO對(duì)復(fù)合材料綜合性能的提升,證明mG的平臺(tái)優(yōu)越性。具體實(shí)施過(guò)程中,首先基于活性試劑法中的1,3-偶極環(huán)加成反應(yīng)對(duì)液相剝離法制備的石墨烯進(jìn)行修飾,通過(guò)合成條件的優(yōu)化,成功地構(gòu)建了兼具優(yōu)異導(dǎo)電性能和分散能力的石墨烯多功能化學(xué)修飾平臺(tái)—2-(3,4-二羥苯基)-吡咯烷(DHPP)接枝石墨烯(G-OH),并利用G-OH結(jié)構(gòu)中不同的活性反應(yīng)位對(duì)石墨烯進(jìn)行再修飾:利用G-OH結(jié)構(gòu)中酚羥基的活性,通過(guò)威廉姆森(Williamson)醚化反應(yīng)合成了環(huán)氧基接枝石墨烯(G-EP),通過(guò)酯化反應(yīng)合成了雙鍵接枝石墨烯(G-MA);利用G-OH結(jié)構(gòu)中酚羥基鄰對(duì)位氫的活性,實(shí)現(xiàn)了熱塑性酚醛樹(shù)脂(Novolak)接枝石墨烯(G-PR)的合成;利用G-OH結(jié)構(gòu)中酚羥基和吡咯烷環(huán)與Fe Cl3的絡(luò)合能力,制備了磁性納米粒子(G-FeCl3),證明了G-OH的平臺(tái)特性。隨后將G-EP和G-PR分別應(yīng)用到環(huán)氧樹(shù)脂(EP)和熱固性酚醛樹(shù)脂(Resole)復(fù)合材料的制備中,研究發(fā)現(xiàn)G-EP和G-PR能夠提高復(fù)合材料的綜合性能,包括力學(xué)性能、導(dǎo)電性能、導(dǎo)熱性能和熱穩(wěn)定性,特別是在導(dǎo)電和導(dǎo)熱性能方面,G-EP和G-PR較pG、GO/rGO更加有效,證明了G-OH的平臺(tái)優(yōu)越性。EP/G-EP復(fù)合材料和Resole/G-PR復(fù)合材料的電導(dǎo)率逾滲閾值分別低至0.16 vol%和0.12vol%。當(dāng)石墨烯含量為10 wt%時(shí),EP/G-EP復(fù)合材料的熱導(dǎo)率達(dá)到了3.138W·m~(-1)·K~(-1),較純EP提升了1886%。當(dāng)石墨烯用量為0.5 wt%時(shí),Resole/G-PR復(fù)合材料的熱導(dǎo)率達(dá)到0.269 W·m~(-1)·k~(-1),較Resole基體提高了156%。最后,為了證明活性試劑法構(gòu)建高品質(zhì)石墨烯化學(xué)修飾平臺(tái)的廣譜性(Wide-adaptability),又基于活性試劑法中的原位重氮鹽反應(yīng)對(duì)石墨烯進(jìn)行修飾,成功地構(gòu)建了另一種導(dǎo)電性能和分散能力優(yōu)異的石墨烯化學(xué)修飾平臺(tái)—苯酚接枝石墨烯(G-phenol)。利用G-phenol結(jié)構(gòu)中酚羥基的活性,通過(guò)酯化反應(yīng)將雙鍵接枝到石墨烯表面,得到產(chǎn)物G-DB,證明了G-phenol的平臺(tái)特性。將G-DB加入到苯乙烯(St)自由基引發(fā)體系,通過(guò)原位聚合實(shí)現(xiàn)了聚苯乙烯(PS)接枝石墨烯(G-PS)的合成。將G-PS應(yīng)用到PS復(fù)合材料的制備中,研究發(fā)現(xiàn)G-PS同樣能夠提高復(fù)合材料的綜合性能,而且在提高復(fù)合材料導(dǎo)電和導(dǎo)熱性能方面,G-PS較pG、GO/rGO同樣更加有效,證明了G-phenol平臺(tái)的優(yōu)越性。PS/G-PS復(fù)合材料的電導(dǎo)率逾滲閾值低至0.22 vol%,在石墨烯含量為2.34 vol%時(shí),復(fù)合材料的最終電導(dǎo)率高達(dá)95.2 S·m~(-1)。當(dāng)石墨烯用量為5.0 wt%時(shí),PS/G-PS復(fù)合材料的熱導(dǎo)率達(dá)到0.253 W·m~(-1)·k~(-1),較PS基體的熱導(dǎo)率提高了229%。綜上,通過(guò)活性試劑法能夠構(gòu)建出性能優(yōu)于GO/rGO的高品質(zhì)多功能石墨烯化學(xué)修飾平臺(tái),從而滿足石墨烯的不同應(yīng)用目標(biāo)需求,而且基于該類(lèi)化學(xué)修飾平臺(tái)構(gòu)建的聚合物復(fù)合材料較基于pG、GO/rGO平臺(tái)構(gòu)建的復(fù)合材料在導(dǎo)電和導(dǎo)熱性能方面更加優(yōu)異。
[Abstract]:Surface modification can effectively improve the processing property of graphene solution, regulate the band gap of graphene, give the special functionality of graphene, and lay a solid foundation for the effective use of graphene. The development of the surface modification of graphene has achieved a lot of achievements. This project intends to provide a systematic solution to the surface modification of graphene to achieve effective use of graphene on different occasions. The overall thinking way is to obtain a similar form by surface modification. Graphene oxide (modifiable graphene, mG) is redecorated on the surface of graphene oxide (GO) or reductive graphene oxide (rGO), and then the surface chemical refabrication of expected graphene is realized by two or more modification of the material on the platform. In the study, high quality graphene is prepared by graphite phase stripping method and the selection activity of mG is made. The chemical modification method of the reagent - graphene is carried out. This is not only because the surface modification method based on the active reagent is less destructive and controllable on the structure of graphene, it can provide the possibility for the preparation of high quality graphene, such as multi-functional polymer composites, but also the choice of the active reagent. The surface chemical reactivity of graphene provides reactive active points. Among them, the latter is particularly important in this project. Subsequently, the mG will be used as a platform material to obtain different target graphene materials (modified graphene, MG) after a specific surface modification, to study the platform characteristics of mG, and to apply the MG designed by special molecules to the polymer composite. In the material, the study of MG relative to the unmodified graphene (pristine graphene, pG) and the enhancement of the comprehensive properties of the composite materials by GO/rGO proves the superiority of the mG platform. In the specific implementation process, first, based on the 1,3- dipole ring addition reaction in the active reagent method, the graphene is modified by the liquid phase stripping method, and the synthesis conditions are optimized. 2- (3,4- dihydroxyphenyl) - pyrrolidine (DHPP) grafted graphene (G-OH), which has excellent conductivity and dispersing ability, is constructed, and the modified graphene (G-OH) is redecorated by different reactive sites in the G-OH structure: the activity of phenol hydroxyl in the structure of G-OH, through Williamson (Williamson) ether The synthesis of epoxy based grafted graphene (G-EP) was synthesized by esterification. The synthesis of double bond grafted graphene (G-MA) was synthesized by esterification. The synthesis of thermoplastic phenolic resin (Novolak) grafted graphene (G-PR) was synthesized by the activity of hydroxyl hydroxy ortho para hydrogen in G-OH structure, and the complexing ability of phenol hydroxyl group and pyrrolidone ring to Fe Cl3 in G-OH structure was prepared. Magnetic nanoparticles (G-FeCl3) proved the platform characteristics of G-OH. Subsequently, G-EP and G-PR were applied to the preparation of epoxy resin (EP) and thermosetting phenolic resin (Resole) composites. It was found that G-EP and G-PR could improve the composite properties, including mechanical properties, electrical conductivity, thermal conductivity and thermal stability. In the field of conduction and thermal conductivity, G-EP and G-PR are more effective than pG and GO/rGO. It is proved that the conductivity of G-OH is superior to.EP/G-EP composites and Resole/G-PR composites, the conductivity percolation threshold is lower to 0.16 vol% and 0.12vol%. when the content of graphene is 10 wt%, and the thermal conductivity of the EP/G-EP compound material reaches 3.138W. When the pure EP increased 1886%. when the amount of graphene was 0.5 wt%, the thermal conductivity of the Resole/G-PR composites reached 0.269 W. M~ (-1). K~ (-1), and the Resole matrix increased the 156%. last. In order to prove the broad-spectrum of the high quality graphene chemical modification platform by the active reagent method (Wide-adaptability), and in situ diazo in the active reagent method. Another kind of graphene modified platform, phenol graft graphene (G-phenol), is successfully constructed by the reaction of salt reaction to graphene, which has excellent conductivity and dispersing ability. Using the activity of phenol hydroxyl in the structure of G-phenol, the double bond is grafted onto the Shi Moxi surface by esterification, and the product G-DB is obtained. It is proved that the platform of G-phenol is special. G-DB is added to the styrene (St) free radical initiating system and the synthesis of polystyrene (PS) grafted graphene (G-PS) is realized by in situ polymerization. G-PS is applied to the preparation of PS composites. It is found that G-PS can also improve the comprehensive properties of the composites, and G-PS is more pG in improving the conductive and thermal conductivity of the composite. GO/rGO is also more effective, proving the superiority of the G-phenol platform. The conductivity of.PS/G-PS composites is low to 0.22 vol%. When the content of graphene is 2.34 vol%, the ultimate conductivity of the composite is up to 95.2 S. M~ (-1). When the amount of graphene is 5 wt%, the thermal conductivity of PS/ G-PS composites reaches 0.253 W. The thermal conductivity of the PS matrix is higher than that of the 229%.. Through the active reagent method, the high quality multi-functional graphene chemical modification platform with better performance than GO/rGO can be constructed to meet the needs of different application targets of graphene, and the polymer composite based on this kind of chemical modification platform is more complex than pG based and GO/rGO platform. Composite materials are more excellent in conductivity and thermal conductivity.
【學(xué)位授予單位】:青島科技大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類(lèi)號(hào)】:TQ127.11;TB33


本文編號(hào):2175185

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/huaxuehuagong/2175185.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶(hù)ddbaa***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com