不同離子濃度條件下典型有機(jī)物對(duì)不同超濾膜的吸附特性研究
[Abstract]:In recent years, ultrafiltration technology has been widely used in the field of water treatment. However, the UF membrane is easy to pollute and its cost is high, so it is restricted greatly in the process of popularization. In this paper, the properties and microstructure of three kinds of self-made ultrafiltration membranes are discussed, and then the contamination of bovine serum protein (BSA) to three kinds of membrane materials (PVDF, PES and EVOH) under different kinds of ions (Na ~ (2 +) and ion concentration is discussed. The mechanism of membrane fouling was discussed by means of quartz crystal microbalance (QCM-D). The results showed that: (1) the hydrophilicity of the three membrane materials was EVOHPESPVDF.The hydrophobicity of the three membranes was related to the fouling ability of the membrane. When the hydrophilic membrane was hydrophilic, the hydrophobic membrane was not easy to be contaminated, so the serious pollution degree of the three membranes was EVOHPESPVDF. For PVDF and EVOH membranes with larger membrane pores, because the BSA molecule is a uniform ellipsoid structure, it is not easy for the molecules to intersect with each other, and it is easier for a single molecule to enter into the membrane pore through the membrane surface and the BSA molecule is easily lost. Therefore, the BSA retention rate of these two membranes is lower than that of PES. Therefore, PES membrane has the strongest retention ability to BSA. The highest amount of BSA adsorption was PVDF membrane, followed by PES membrane EVOH membrane under the condition of ion-free coexistence. (2) the BSA retention rate of the three membranes under Na ion coexistence condition. On the whole, the PES membrane had the highest rejection rate and the lowest EOVH membrane was PVDF membrane. The same ultrafiltration membrane material showed the same rule that the higher the concentration of Na ion, the lower the rejection rate of BSA. For PVDF membrane and EVOH membrane, when Na ion concentration was 100 mmol / L, BSAs could hardly be intercepted. This may be due to the water binding between bovine serum protein molecules and the membrane surface, which makes it difficult for the bovine serum protein molecules to aggregate with each other, and its molecular weight is small, which makes it easy to penetrate the membrane pore and reduce the rejection rate. The flux recovery rate decreases with the increase of ion concentration, increases to a certain extent, and increases to a certain extent. When the concentration of Na ion is 0 mmol / L ~ (-1) mol / L ~ (10) mmol / L ~ (10) mmol / L ~ (-1), the three kinds of ultrafiltration membranes are in the initial stage of fouling process in the process of adsorption of BSA. The adsorption rate is very fast and the rigid adsorption layer is formed. After a certain time the adsorption layer begins to show viscoelasticity and the adsorption amount does not increase and the adsorption process reaches the adsorption equilibrium. When the ion concentration increases, the adsorption capacity increases, but when the ion concentration increases to a certain extent and the hydration force becomes the dominant force, the adsorption capacity begins to decrease because of the increase of the hydration repulsion force. (3) when the Ca 2 + coexists, the adsorption capacity begins to decrease. In the experiments of membrane flux attenuation and membrane flux recovery, the adsorption behavior of BSA on three kinds of ultrafiltration membranes was studied, and the pollution law was found to be similar to that of Na ions. The higher the concentration of Ca 2 +, the lower the rejection rate of BSA. For PVDF and EVOH membranes, when Ca 2 + concentration is 100 mmol / L, BSAs can hardly be intercepted. The flux recovery rate shows that with the increase of ion concentration, ion concentration increases to a certain extent, the flux recovery rate increases, and the adsorption behavior is similar to that when Na ion coexists. Because the bivalent Ca2 + and monovalent Na are cations, the electrostatic shielding effect is formed with the negative BSA, and the electrostatic repulsive force decreases and the membrane fouling is aggravated. Because of the complexation of the bivalent Ca 2 +, the effect of Ca 2 + on the flux attenuation of the membrane is slightly greater than that of Na ion.
【學(xué)位授予單位】:西安建筑科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:X703;TQ028.8
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 陳勵(lì)權(quán),辛文達(dá),董長發(fā),王齊祖,馬忠乾;加壓離子交換螯合排代法分離稀土元素時(shí)排代離子作用的研究——(Ⅱ)平衡區(qū)段兩相組成與排代離子濃度的關(guān)系[J];稀土;1984年02期
2 鄭錦其,李少強(qiáng),陳銘俊,陳勇,王學(xué)勤;福州廈門兩市空氣中離子濃度的測(cè)定[J];海峽預(yù)防醫(yī)學(xué)雜志;1998年04期
3 張旭霞;溶液中的離子濃度問題[J];通化師范學(xué)院學(xué)報(bào);2004年05期
4 袁兆嶺,陳繼誠;混酸溶液中有關(guān)離子濃度計(jì)算的簡便公式[J];紹興文理學(xué)院學(xué)報(bào)(自然科學(xué)版);2002年09期
5 王凌云;桂衛(wèi)華;劉梅花;陽春華;;基于改進(jìn)在線支持向量回歸的離子濃度預(yù)測(cè)模型[J];控制與決策;2009年04期
6 袁兆嶺;陳繼誠;;混酸溶液中有關(guān)離子濃度計(jì)算的簡便公式[J];紹興文理學(xué)院學(xué)報(bào)(自然科學(xué)版);2002年03期
7 田嘉興;鐵離子濃度與循環(huán)水質(zhì)量有關(guān)問題的探討[J];吉化科技;1995年02期
8 馮秀范,田子俊;容量法測(cè)定鐵離子濃度的一種方法[J];洛陽工學(xué)院學(xué)報(bào);1995年03期
9 鄒金慧;離子濃度檢測(cè)儀的設(shè)計(jì)研究[J];云南工業(yè)大學(xué)學(xué)報(bào);1998年02期
10 杜首英,陸曉霞;離子濃度在線微機(jī)檢測(cè)系統(tǒng)[J];化工自動(dòng)化及儀表;1997年06期
相關(guān)會(huì)議論文 前10條
1 牛中奇;閻靜;盧智遠(yuǎn);邵旺田;楊芳;;毫米波對(duì)細(xì)胞膜表面電荷和細(xì)胞內(nèi)外離子濃度的影響[A];21世紀(jì)醫(yī)學(xué)工程學(xué)術(shù)研討會(huì)論文摘要匯編[C];2001年
2 孫輝;徐寧;;金冶煉工藝中過程離子濃度在線檢測(cè)技術(shù)分析[A];2011中國有色金屬行業(yè)儀表自動(dòng)化學(xué)術(shù)會(huì)議論文集[C];2011年
3 李勇剛;李浩;陽春華;王莎;;基于NIWVP-PSO的沉鐵過程鐵離子濃度軟測(cè)量[A];中國自動(dòng)化學(xué)會(huì)控制理論專業(yè)委員會(huì)D卷[C];2011年
4 羅汀;郭義;郭永明;;家兔腧穴處離子濃度分布特異性的微透析在體研究[A];第九屆全國鈣信號(hào)和細(xì)胞功能研討會(huì)論文摘要集[C];2012年
5 晏芳;鄧少平;;脂質(zhì)體穩(wěn)定性的離子濃度區(qū)間實(shí)驗(yàn)研究[A];中國食品科學(xué)技術(shù)學(xué)會(huì)第五屆年會(huì)暨第四屆東西方食品業(yè)高層論壇論文摘要集[C];2007年
6 李順光;陳樹彬;溫磊;胡麗麗;王標(biāo);;釹離子濃度對(duì)受激發(fā)射截面的影響[A];第七屆全國激光科學(xué)技術(shù)青年學(xué)術(shù)交流會(huì)專輯[C];2003年
7 吳學(xué)禮;劉靜;王定遠(yuǎn);孟華;張建華;;基于LabVIEW和研華PCI-1710L的離子濃度檢測(cè)系統(tǒng)[A];2007'儀表,自動(dòng)化及先進(jìn)集成技術(shù)大會(huì)論文集(二)[C];2007年
8 伍林;曹淑超;易德蓮;秦曉蓉;歐陽兆輝;王艷;連蘭;;冷卻液中亞硝酸根和鉬酸根離子濃度測(cè)試盒的研究[A];中國精細(xì)化工協(xié)會(huì)第一屆水處理化學(xué)品行業(yè)年會(huì)論文集[C];2005年
9 李芹;郭慶;胡鴻志;;基于微控制器的智能微量離子濃度分析儀[A];2009全國虛擬儀器大會(huì)論文集(二)[C];2009年
10 胡曉波;;酸雨侵蝕混凝土的試驗(yàn)?zāi)M分析[A];《硅酸鹽學(xué)報(bào)》創(chuàng)刊50周年暨中國硅酸鹽學(xué)會(huì)2007年學(xué)術(shù)年會(huì)論文摘要集[C];2007年
相關(guān)重要報(bào)紙文章 前1條
1 本報(bào)記者 覃澤文;美研究人員發(fā)明“電鰻”電池[N];中國能源報(bào);2009年
相關(guān)博士學(xué)位論文 前1條
1 朱紅求;鋅冶煉除鈷過程建模與智能優(yōu)化方法研究及應(yīng)用[D];中南大學(xué);2010年
,本文編號(hào):2138077
本文鏈接:http://sikaile.net/kejilunwen/huaxuehuagong/2138077.html