天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 化學工程論文 >

基于熱流固耦合的微型換熱器設計方法研究

發(fā)布時間:2018-07-05 18:30

  本文選題:微型換熱器 + 熱流固耦合。 參考:《南昌大學》2015年碩士論文


【摘要】:以整體微通道換熱器為研究對象的流體流動傳熱和結構熱應力的有限元數值模擬方法均面臨有限單元數過多誘發(fā)的通用計算機計算能力不夠的限制,從而使微通道換熱器結構應力模擬仿真至今仍是一項工程技術挑戰(zhàn),針對這一技術難題,本文研究提出了通過在對稱單元位移邊界施加等效彈性支撐約束來近似反映微通道壁面的熱脹冷縮的位移約束的簡化模擬技術方法,并實現了微通道換熱器傳熱和結構應力的快速模擬,為微通道換熱器計算機輔助工程虛擬樣機設計奠定了基礎。本文基于對稱單元位移邊界施加等效彈性支撐約束的簡化模擬技術方法,模擬研究了不同微通道換熱器的流阻特性、傳熱特性和結構強度特性,為研發(fā)高效微通道換熱器提供了理論指導。研究主要取得如下成果:在微通道換熱器中截取對稱單元方法不能直接用于結構應力模擬仿真,而采用整體微型換熱器為對象的結構應力模擬仿真又面臨計算機計算能力的限制,所以微通道換熱器結構應力模擬仿真至今仍是一項工程技術挑戰(zhàn),而研究提出基于對稱單元的微通道換熱器結構應力的有限元簡化模擬分析法是解決這一技術難題的關鍵。針對上述技術難題,本文首次研究提出了通過在對稱單元位移邊界施加等效彈性支撐約束來近似反映微通道壁面的熱脹冷縮的位移約束的微通道換熱器危險區(qū)域熱流固耦合熱應力的有限元簡化數值模擬方法;趯ΨQ單元施加等效彈性約束的有限元簡化數值模擬方法系統(tǒng)研究了不同微通道換熱器的流阻特性、傳熱特性和結構強度特性,研究結果表明微通道換熱器流阻壓降從大到小排序為:三角形微通道?六邊形微通道?矩形微通道?橢圓形微通道?圓形微通道;冷流體實際被加熱效果從大到小排序為:三角形微通道?矩形微通道?六邊形微通道?橢圓形微通道?圓形微通道。傳熱速度從大到小的排序為:橢圓形微通道?圓形微通道?六邊形微通道?矩形微通道?三角形微通道,結構強度從高到低排序為:三角形微通道?矩形微通道?六邊形微通道?圓形微通道?橢圓形微通道。
[Abstract]:The finite element numerical simulation method of fluid flow heat transfer and structural thermal stress, which is based on the whole microchannel heat exchanger, faces the limitation of the general computer computing ability caused by the excessive number of finite elements. Therefore, the stress simulation of microchannel heat exchanger structure is still a technical challenge. In this paper, a simplified simulation technique is proposed to approximate the displacement constraints of thermal expansion and contraction on the wall of microchannels by imposing equivalent elastic support constraints on the displacement boundary of symmetric elements. The fast simulation of heat transfer and structural stress of microchannel heat exchanger is realized, which lays a foundation for the computer aided engineering virtual prototype design of microchannel heat exchanger. In this paper, the flow resistance, heat transfer and structural strength characteristics of different microchannel heat exchangers are simulated based on the simplified simulation method with equivalent elastic bracing constraints imposed on the displacement boundary of symmetric elements. It provides theoretical guidance for the research and development of high efficiency microchannel heat exchanger. The main achievements are as follows: the method of intercepting symmetric elements in microchannel heat exchangers can not be directly used in structural stress simulation. However, the simulation of structural stress with the whole micro heat exchanger is faced with the limitation of computer computing ability, so the simulation of structural stress of microchannel heat exchanger is still a technical challenge in engineering up to now. The key to solve this technical problem is to propose a simplified finite element simulation method for structural stress of microchannel heat exchangers based on symmetric elements. In view of the technical difficulties mentioned above, In this paper, we present for the first time the thermal-fluid-solid coupling thermal stress in the dangerous region of microchannel heat exchanger by applying equivalent elastic support constraints on the displacement boundary of symmetric elements to approximate the displacement constraints of thermal expansion, cooling and contraction on the wall of the microchannel. Finite element simplified numerical simulation method. The flow resistance, heat transfer and structural strength characteristics of different microchannel heat exchangers are systematically studied by a simplified finite element numerical simulation method based on the equivalent elastic constraints imposed by symmetric elements. The results show that the order of pressure drop of flow resistance in microchannel heat exchanger from large to small is: triangular microchannel? Hexagonal microchannel? Rectangular microchannels? Oval microchannel? Circular microchannels; the actual heating effects of cold fluids are in order from large to small: triangular microchannels? Rectangular microchannels? Hexagonal microchannel? Oval microchannel? Circular microchannel. The order of heat transfer rate from large to small is: elliptical microchannel? Circular microchannels? Hexagonal microchannel? Rectangular microchannels? Triangular microchannels, structural strength from high to low order: triangular microchannel? Rectangular microchannels? Hexagonal microchannel? Circular microchannels? Oval microchannel.
【學位授予單位】:南昌大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:TQ051.5

【參考文獻】

相關期刊論文 前3條

1 孫劍韜;姜琦;王軍紅;徐偉;王炅;;基于引信MEMS射流發(fā)電機的流固耦合分析[J];彈箭與制導學報;2012年04期

2 谷芳;崔國起;黃勁松;秦競蕊;張曼;;基于熱流固耦合的換熱器溫差應力分析[J];化工裝備技術;2011年06期

3 梁建術;蘇強;李欣業(yè);;基于ANSYS/Workbench流固耦合輸液波紋管的模態(tài)分析[J];機械設計與制造;2013年02期

,

本文編號:2101300

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/huaxuehuagong/2101300.html


Copyright(c)文論論文網All Rights Reserved | 網站地圖 |

版權申明:資料由用戶b0725***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com