層狀陶瓷的制備、動(dòng)態(tài)壓縮性能及抗沖擊機(jī)理
本文選題:反應(yīng)熱壓燒結(jié)法 + 反應(yīng)連接法; 參考:《西北工業(yè)大學(xué)》2016年博士論文
【摘要】:金屬由于易加工、高塑性等優(yōu)點(diǎn)被廣泛用作裝甲材料,但由于其低熔點(diǎn)、低硬度的特性使其在耐高溫和防侵徹能力上遠(yuǎn)遠(yuǎn)難以滿足抗高速高能沖擊的需求。超硬陶瓷具有超高硬度、耐高溫、不易變形等優(yōu)點(diǎn),被用作耐高速高能沖擊材料,但陶瓷的脆性,使其對(duì)缺陷的容忍性極低,在高速高能沖擊過(guò)程中極易失效,難以抵抗多次沖擊。層狀陶瓷材料由于具有高缺陷容忍性、高吸能能力以及結(jié)構(gòu)可設(shè)計(jì)等優(yōu)點(diǎn),具有滿足抗高速高能沖擊要求的潛力。國(guó)內(nèi)外研究重點(diǎn)主要集中在具有多孔界面或者低強(qiáng)度的弱界面等層狀陶瓷方面的抗沖擊性能,但由于界面強(qiáng)度低且界面結(jié)合強(qiáng)度低,在動(dòng)態(tài)載荷作用下易因?yàn)榻缑嫫茐暮兔撜扯?限制了其結(jié)構(gòu)完整性和能量吸收能力的提升。本文提出了反應(yīng)熱壓燒結(jié)法(Reactive hot pressing,RHP)和反應(yīng)連接法(Reactive jointing method,RJM)制備抗沖擊層狀陶瓷的新方法。對(duì)ZrO-Zr_2CN/Si_3N_4層狀陶瓷進(jìn)行了以下研究:優(yōu)化了層狀陶瓷的燒結(jié)工藝;研究了層狀陶瓷結(jié)構(gòu)控制的方法;研究了層狀陶瓷結(jié)構(gòu)與力學(xué)性能的關(guān)系;研究了層狀陶瓷動(dòng)態(tài)壓縮性能的影響因素。研究了陶瓷層和金屬層性質(zhì)對(duì)M/C層狀陶瓷的動(dòng)態(tài)壓縮性能的影響規(guī)律,對(duì)比了反應(yīng)熱壓燒結(jié)法和反應(yīng)連接法制備軟硬交替疊層層狀陶瓷的性能。主要研究?jī)?nèi)容如下:(1)研究了燒結(jié)溫度和燒結(jié)壓力對(duì)ZrO-Zr_2CN/Si_3N_4層狀陶瓷的微結(jié)構(gòu)和力學(xué)性能的影響。提高燒結(jié)溫度和燒結(jié)壓力,ZrO-Zr_2CN層和Si_3N_4層的致密度和硬度提高,層狀陶瓷的彎曲強(qiáng)度和楊氏模量也提高。(2)研究了Si_3N_4層厚度和升溫速率對(duì)ZrO-Zr_2CN/Si_3N_4層狀陶瓷界面性質(zhì)和微結(jié)構(gòu)的影響,建立界面和層內(nèi)反應(yīng)模型。隨著Si_3N_4層厚度或者升溫速率的增加,界面強(qiáng)度增加(弱界面厚度減小或者轉(zhuǎn)化為強(qiáng)界面);升溫速率由10 oC/min變?yōu)?7 oC/min時(shí),ZrO-Zr_2CN層內(nèi)的連續(xù)相由Zr_2CN相轉(zhuǎn)變?yōu)閆rO與ZrO2的混合相(Zr-O混合相)。(3)研究了層結(jié)構(gòu)和界面性質(zhì)對(duì)ZrO-Zr_2CN/Si_3N_4層狀陶瓷力學(xué)性能的影響。弱Zr_2CN界面厚度大于15μm,界面厚度是層狀陶瓷強(qiáng)度的主要控制因素;弱界面厚度小于15μm時(shí),減小界面厚度有助于提高層狀陶瓷強(qiáng)度和斷裂功,且弱界面轉(zhuǎn)換為強(qiáng)界面時(shí)有利于提高層狀陶瓷的彎曲強(qiáng)度和斷裂功。較弱的ZrO-Zr_2CN軟層降低了層狀陶瓷的楊氏模量,但有利于提高層狀陶瓷的斷裂功。(4)研究了層間殘余應(yīng)力對(duì)ZrO-Zr_2CN/Si_3N_4層狀陶瓷的能量吸收能力的影響。殘余應(yīng)力是影響能量吸收、釋放和再分布的主要因素之一,隨著Si_3N_4層內(nèi)殘余壓應(yīng)力的增加,層狀陶瓷的彎曲斷裂功增加。(5)研究了應(yīng)變率對(duì)ZrO-Zr_2CN/Si_3N_4層狀陶瓷的動(dòng)態(tài)壓縮性能的影響。隨著應(yīng)變率從1.1×103 s-1增加到3.3×103 s-1,ZrO-Zr_2CN/Si_3N_4層狀陶瓷的動(dòng)態(tài)應(yīng)變?cè)黾?在應(yīng)變率為2.0×103 s-1時(shí),動(dòng)態(tài)壓縮強(qiáng)度取得最大值。裂紋萌生區(qū)域?yàn)閆r_2CN界面層,且隨著應(yīng)變率的增加,裂紋萌生區(qū)域的數(shù)量增加。(6)研究了界面性質(zhì)和層結(jié)構(gòu)對(duì)ZrO-Zr_2CN/Si_3N_4層狀陶瓷的動(dòng)態(tài)壓縮性能的影響,建立動(dòng)態(tài)失效模型。Zr_2CN界面厚度由3~5μm增加為25-30μm時(shí),沖擊應(yīng)力波ZrO-Zr_2CN/Si_3N_4層狀陶瓷的傳播模型由三桿共軸碰撞模型變?yōu)樗臈U共軸碰撞模型。隨著界面強(qiáng)度的增加,ZrO-Zr_2CN/Si_3N_4層狀陶瓷的動(dòng)態(tài)壓縮強(qiáng)度和動(dòng)態(tài)能量吸收能力提高,但動(dòng)態(tài)假塑性變形能力降低;隨著Si_3N_4層厚度的增加,層狀陶瓷的動(dòng)態(tài)壓縮強(qiáng)度和動(dòng)態(tài)應(yīng)變?cè)黾?但動(dòng)態(tài)能量吸收能力降低。(7)研究了陶瓷層厚度、陶瓷層種類和金屬層種類對(duì)M/C層狀陶瓷動(dòng)態(tài)壓縮性能的影響。增加陶瓷層厚度和金屬層強(qiáng)度,提高了M/C層狀陶瓷的動(dòng)態(tài)壓縮強(qiáng)度,但減弱了動(dòng)態(tài)變形能力和能量吸收能力;增加陶瓷層強(qiáng)度,大幅度提高了層狀陶瓷的動(dòng)態(tài)變形能力和能力吸收能力;提高金屬層強(qiáng)度,提高了M/C層狀陶瓷的動(dòng)態(tài)承載能力,但降低了層狀陶瓷的動(dòng)態(tài)變形能力。(8)對(duì)比了反應(yīng)熱壓燒結(jié)法和反應(yīng)連接法兩種制備的軟硬交替疊層層狀陶瓷,為抗沖擊軟硬交替疊層層狀陶瓷的合理應(yīng)用建立依據(jù)。反應(yīng)連接法具有周期短、溫度低的優(yōu)勢(shì),制備的M/C層狀陶瓷適宜用于抵抗低能量的動(dòng)態(tài)載荷;反應(yīng)熱壓燒結(jié)法制備的ZrO-Zr_2CN/Si_3N_4層狀陶瓷具有高強(qiáng)度、高應(yīng)變和強(qiáng)能量吸收能力,更適宜于用于制備抗高速高能沖擊的層狀陶瓷。
[Abstract]:Metal is widely used as armored material because of its advantages of easy processing and high plasticity. However, due to its low melting point and low hardness, it is very difficult to meet the demand for high speed and high energy impact on high temperature resistance and penetration resistance. Super hard ceramics have the advantages of super hardness, high temperature resistance and non deformation, which are used as high speed and high energy impact materials, but they are used as high speed and high energy impact materials. The brittleness of ceramics is very low in tolerance to defects. It is very easy to fail in the process of high speed and high energy impact, and it is difficult to resist multiple shocks. The layered ceramic material has the advantages of high tolerance, high energy absorption capacity and structure design. It has the potential to meet the requirements of high speed and high energy impact. Due to low interfacial strength and low interfacial bonding strength, the interfacial failure and debonding are easy to fail due to the low interfacial strength and low interfacial bonding strength, which has limited the structural integrity and energy absorption ability. This paper proposed a reaction hot pressing sintering (Reacti) method. Ve hot pressing, RHP) and the reaction connection method (Reactive jointing method, RJM) are used to prepare a new method for the preparation of impact resistant layered ceramics. The following studies are made on the ZrO-Zr_2CN/Si_3N_4 layered ceramics: the sintering process of layered ceramics is optimized, the formula for controlling the structure of layered ceramics is studied, and the relationship between the structure of layered ceramics and the mechanical properties is studied. The influence factors of dynamic compression properties of layered ceramics were investigated. The effects of the properties of ceramic layer and metal layer on the dynamic compression properties of M/C layered ceramics were studied. The properties of soft hard alternating laminated ceramics were compared with the reaction hot pressing and reaction connection methods. The main contents are as follows: (1) the sintering temperature and pressure are studied. The influence of force on the microstructure and mechanical properties of ZrO-Zr_2CN/Si_3N_4 layered ceramics. Increase the sintering temperature and sintering pressure, increase the density and hardness of the ZrO-Zr_2CN layer and Si_3N_4 layer, and improve the bending strength and Young's modulus of the layered ceramics. (2) the interfacial properties of ZrO-Zr_2CN/Si_3N_4 layered ceramics are studied by the thickness of Si_3N_4 layer and the rate of rising temperature. As the thickness of the Si_3N_4 layer or the heating rate increases, the interface strength increases with the increase of the thickness of the Si_3N_4 layer (the thickness of the weak interface or the strong interface); when the heating rate changes from 10 oC/min to 17 oC/min, the continuous phase in the ZrO-Zr_2CN layer is transformed from Zr_2CN phase to the mixture of ZrO and ZrO2 (Zr-O mixed). (3) (3) the effect of layer structure and interfacial properties on the mechanical properties of layered ceramics is studied. The thickness of the weak Zr_2CN interface is more than 15 mu m, and the thickness of the interface is the main controlling factor of the strength of layered ceramics. When the thickness of the weak interface is less than 15 u m, the decrease of the thickness of the interface is helpful to improve the strength and fracture work of the layered ceramics and the weak interface transition. The weak ZrO-Zr_2CN soft layer reduces the young's modulus of layered ceramics, but is beneficial to improve the fracture work of layered ceramics. (4) the influence of interlayer residual stress on the energy absorption capacity of ZrO-Zr_2CN/Si_3N_4 layered ceramics is studied. Residual stress is the influence of energy absorption. One of the main factors of collecting, releasing and redistributing, with the increase of residual compressive stress in the Si_3N_4 layer, the flexural fracture work of layered ceramics is increased. (5) the effect of strain rate on the dynamic compression properties of ZrO-Zr_2CN/Si_3N_4 layered ceramics is studied. With the strain rate increasing from 1.1 x 103 S-1 to 3.3 x 103 s-1, the movement of ZrO-Zr_2CN/Si_3N_4 layered ceramics The dynamic compressive strength is maximum when the strain rate is 2 x 103 s-1. The crack initiation area is Zr_2CN interface layer, and the number of crack initiation area increases with the increase of strain rate. (6) the dynamic failure of ZrO-Zr_2CN/Si_3N_4 layered ceramics is studied by the interfacial properties and layer structure. When the interface thickness of the model.Zr_2CN is increased from 3~5 to 25-30 m, the propagation model of the impact stress wave ZrO-Zr_2CN/Si_3N_4 layer ceramics is transformed from the three bar coaxial collision model to the four bar coaxial collision model. With the increase of the interface strength, the dynamic compression strength and dynamic energy absorption capacity of the ZrO-Zr_2CN/Si_3N_4 layered ceramics are improved, but the dynamic false is false. The dynamic compressive strength and dynamic strain increased with the increase of the thickness of Si_3N_4 layer, but the dynamic energy absorption capacity decreased. (7) the influence of ceramic layer thickness, ceramic layer and metal layer on the dynamic compression properties of M/C layered ceramics was studied. The thickness of ceramic layer and the strength of metal layer were increased. The dynamic compressive strength of M/C layered ceramics was reduced, but the dynamic deformation ability and energy absorption capacity were weakened, and the dynamic deformation ability and ability absorption capacity of the ceramic layer were increased greatly, the strength of the metal layer and the dynamic bearing capacity of the M/C layered ceramics were improved, but the dynamic deformation energy of the layered ceramics was reduced. (8) a comparison of two soft hard laminated laminated ceramics prepared by reactive hot press sintering and reaction connection method, which is the basis for the rational application of the laminated ceramic with shock resistant soft and hard alternating layers. The reaction connection method has the advantages of short period and low temperature. The prepared M/C layered ceramics are suitable for resisting low energy dynamic load and reaction heat. The ZrO-Zr_2CN/Si_3N_4 layered ceramics prepared by the pressure sintering method have high strength, high strain and strong energy absorption ability, which is more suitable for the preparation of layered ceramics with high speed and high energy impact.
【學(xué)位授予單位】:西北工業(yè)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:TQ174.1
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 聶明明;徐志鋒;余歡;王振軍;姚菁;;基體對(duì)連續(xù)C_f/Al復(fù)合材料致密度和強(qiáng)度的影響[J];特種鑄造及有色合金;2015年10期
2 吳銘方;劉飛;王鳳江;喬巖欣;;陶瓷基復(fù)合材料輔助脈沖電流液相擴(kuò)散連接的界面反應(yīng)及接頭強(qiáng)化機(jī)制[J];金屬學(xué)報(bào);2015年09期
3 鐘華;郭智興;熊計(jì);周威;;溫度對(duì)基于液相燒結(jié)的Ti(C,N)基金屬陶瓷/鋼擴(kuò)散連接的影響[J];熱加工工藝;2015年17期
4 吳南星;陳正林;廖達(dá)海;;基于lamb波在氮化硅陶瓷葉片及其作摩擦材料鍍層傳播特性的研究[J];陶瓷學(xué)報(bào);2015年01期
5 楊揚(yáng);徐緋;張?jiān)狼?湯忠斌;;平紋編織C/SiC復(fù)合材料低速?zèng)_擊數(shù)值模擬[J];爆炸與沖擊;2015年01期
6 藍(lán)林鋼;甘海嘯;;壓痕法測(cè)試NEPE推進(jìn)劑/襯層界面的彈性模量[J];理化檢驗(yàn)(物理分冊(cè));2014年10期
7 陳維平;何曾先;黃丹;羅杰;;SiC/Al合金層狀復(fù)合材料的彈道沖擊動(dòng)態(tài)響應(yīng)[J];華南理工大學(xué)學(xué)報(bào)(自然科學(xué)版);2010年09期
8 趙世柯;;氧化鋁基陶瓷Mo-Mn法金屬化機(jī)理分析及實(shí)驗(yàn)研究[J];真空電子技術(shù);2010年04期
9 孫耀峰;;陶瓷裝甲的發(fā)展(上)[J];輕兵器;2010年09期
10 姚磊江;李自山;程起有;童小燕;;2D C/SiC復(fù)合材料低速?zèng)_擊損傷研究[J];無(wú)機(jī)材料學(xué)報(bào);2010年03期
相關(guān)博士學(xué)位論文 前1條
1 岳武;結(jié)構(gòu)和組織不均勻性對(duì)無(wú)鉛微焊點(diǎn)電遷移行為影響的研究[D];華南理工大學(xué);2014年
相關(guān)碩士學(xué)位論文 前1條
1 任歡;SiC陶瓷與不銹鋼層狀材料的連接技術(shù)[D];河北工業(yè)大學(xué);2014年
,本文編號(hào):2099633
本文鏈接:http://sikaile.net/kejilunwen/huaxuehuagong/2099633.html