摻稀土鍺酸鹽玻璃的中紅外光譜性能研究
本文選題:稀土離子 + 能量轉移 ; 參考:《中國計量學院》2015年碩士論文
【摘要】:~3μm波長的中紅外熒光發(fā)射包含了許多大氣分子的特征譜線帶,在軍事對抗、醫(yī)療手術、環(huán)境污染檢測以及光通信等領域有重要應用。本論文主要目的在于研究能夠適用于~3μm激光輸出的玻璃材料。通過對玻璃基質(zhì)的組分調(diào)整及稀土離子的濃度優(yōu)化,制備出了適用于~3μm發(fā)光的玻璃材料。本文首先制備了不同Ga2O3含量的鍺酸鹽玻璃,對玻璃樣品進行了XRD分析。發(fā)現(xiàn)當Ga2O3含量達到25 mol%時,玻璃開始變得不透明。對未析晶樣品進行了熱分析、發(fā)現(xiàn)所制備的樣品具有較高的ΔT和kgl(140°C和0.176)。進一步研究了玻璃的結構、物理及光學性能,通過拉曼光譜分析發(fā)現(xiàn)玻璃的最大聲子振動頻率隨著Ga2O3含量的增加逐漸向低波數(shù)方向移動。測試了Er3+的吸收光譜,討論了J-O參數(shù)及輻射性質(zhì)。研究了玻璃的紅外透過光譜,發(fā)現(xiàn)樣品的最大透過率高達84%。中紅外熒光光譜表明2.7μm發(fā)射強度隨著Ga2O3含量增加先降低后增加。計算發(fā)現(xiàn)所制備樣品的最大發(fā)射截面可達4.68×10-21 cm2。利用速率方程和Inokuti-Hirayama模型計算了能量轉移參數(shù)及能量轉移上轉換系數(shù),解釋了2.7μm熒光行為。在前一章研究的基礎上,進一步制備了R2O3(R=Al/Y/Gd/La)及Nb2O5改進的鍺酸鹽玻璃。研究了R2O3對玻璃密度、折射率等物化參數(shù)的影響,比較了R2O3及Nb2O5對其熱穩(wěn)定性、析晶活化能等熱力學性能。發(fā)現(xiàn)Y2O3改進的玻璃具有更高的ΔT及kgl值(175°C和0.224)。研究了樣品的拉曼光譜,對其玻璃結構及最大聲子能量進行了分析。中紅外熒光光譜分析表明Y2O3改進的鍺酸鹽玻璃在2.7μm處具有較高的熒光強度及發(fā)射截面。研究了Er3+的能量轉移過程,討論了2.7μm熒光增強的機理。采用Y2O3改進的鍺酸鹽玻璃為基質(zhì),研究了Er3+濃度對其2.7μm熒光性能的影響,發(fā)現(xiàn)所制備的樣品能實現(xiàn)6 mol%Er3+的高濃度摻雜而沒有熒光猝滅;谏限D換及近紅外熒光光譜,提出了合理的能量轉移機理。研究發(fā)現(xiàn)激發(fā)態(tài)吸收(ESA2)、交叉弛豫(CR)及能量轉移上轉換(ETU2)過程隨著Er3+濃度的增加而變強。這些過程均有利于提高激光上下能級的粒子數(shù)反轉,增強2.7μm熒光發(fā)射。制備了Er3+/Tm3+共摻鍺酸鹽玻璃,發(fā)現(xiàn)Tm3+能夠有效的敏化Er3+粒子,顯著增強了2.7μm發(fā)射。討論了Tm3+與Er3+間的能量轉移機理并計算了Tm3+與Er3+間的能量轉移微觀參數(shù)及能量轉移效率。結果表明Er3+:4I13/2→Tm3+:3F4的能量轉移系數(shù)(2.94×10-39cm6/s)遠大于Er3+:4I11/2→Tm3+:3H5的值(0.93×10-40 cm6/s)。通過速率方程分析,進一步證實了2.7μm,1.8及1.53μm熒光變化。制備了Er3+-Yb3+共摻鍺酸鹽玻璃,在980nm波長泵浦下,Er3+-Yb3+共摻樣品的2.7μm、1.53μm及上轉換發(fā)射強度明顯高于Er3+單摻樣品。隨著Yb3+濃度的增加,其發(fā)射強度單調(diào)增加,沒有出現(xiàn)明顯的熒光猝滅現(xiàn)象。接著討論了Er3+與Yb3+的能量轉移機理,Yb3+:2F5/2→Er3+:4I11/2的能量轉移微觀參數(shù)高達1.42×10-39 cm6/s。本文最后研究了Ho3+/Yb3+共摻鍺酸鹽玻璃的2.9μm光譜性能。基于吸收光譜及J-O理論,計算了Ho3+的Judd-Ofelt強度參數(shù)及輻射性質(zhì),發(fā)現(xiàn)Ho3+:5I6→5I7躍遷(2.9μm)的自發(fā)輻射躍遷幾率高達36.66 s-1。中紅外熒光光譜表明當Ho3+:Yb3+的濃度比為0.1:2時,2.9μm熒光最強。計算的2.9μm發(fā)射截面高達8.58×10-21 cm2,當反轉粒子數(shù)P為0.5時,在2866-3000nm處的增益為正。通過上轉換、近紅外及中紅外光譜分析,討論了Ho3+和Yb3+的能量轉移機理,計算了Yb3+到Ho3+的能量傳遞效率及能量傳遞系數(shù),分別為35.8%和4.06×10-40 cm6/s。最后利用YokotaTanimoto模型計算了不同Ho3+濃度的Yb3+到Ho3+的能量轉移系數(shù),發(fā)現(xiàn)隨著Ho3+濃度的增加,其值逐漸減小,這表明5I6能級的粒子數(shù)隨著Ho3+濃度而降低,與實驗結果一致。
[Abstract]:The middle infrared fluorescence emission of ~3 mu m wavelength contains many characteristic spectral lines of atmospheric molecules. It has important applications in military confrontation, medical operation, environmental pollution detection and optical communication. The main purpose of this paper is to study glass materials that can be applied to the output of ~3 mu m laser. The glass material suitable for ~3 mu m luminescence was prepared. The germanate glass with different Ga2O3 content was prepared in this paper. The glass samples were analyzed by XRD. It was found that when the content of Ga2O3 reached 25 mol%, the glass began to become opaque. The structure, physical and optical properties of the glass are further studied. The vibration frequency of the maximum phonon of the glass is gradually moved to the low wave number with the increase of the Ga2O3 content. The absorption spectra of Er3+ are tested and the J-O parameters and radiation properties are discussed. The infrared transmittance of the glass is studied. The infrared transmittance of the glass is studied. It is found that the maximum transmittance of the sample up to 84%. mid infrared fluorescence spectra shows that the emission intensity of 2.7 mu m decreases first and then increases with the increase of Ga2O3 content. The maximum emission cross section of the prepared sample can reach 4.68 x 10-21 cm2. utilization rate equation and Inokuti-Hirayama model to calculate the energy transfer parameters and the energy transfer upconversion system The fluorescence behavior of 2.7 mu m was explained. On the basis of the previous chapter, R2O3 (R=Al/Y/Gd/La) and Nb2O5 improved germanate glass were further prepared. The effects of R2O3 on the physical parameters of glass density, refractive index and so on were studied. The thermodynamic properties of R2O3 and Nb2O5 on its thermal stability and crystallization activation energy were compared. The improved glass tool with Y2O3 was found. A higher Delta T and KGL value (175 degree C and 0.224). The Raman spectra of the samples were studied, and the glass structure and the maximum phonon energy were analyzed. The mid infrared fluorescence spectrum analysis showed that the Y2O3 improved germanate glass had high fluorescence intensity and the emission cross section at 2.7 mu m. The energy transfer process of Er3+ was studied, and 2.7 mu m fluorescence was discussed. Strengthening mechanism. Using Y2O3 improved germanate glass as matrix, the effect of Er3+ concentration on its 2.7 u m fluorescence is studied. It is found that the prepared samples can achieve high concentration of 6 mol%Er3+ without fluorescence quenching. Based on upconversion and near infrared fluorescence spectroscopy, the mechanism of energy transfer is proposed. ESA2, cross relaxation (CR) and energy transfer up conversion (ETU2) process become stronger with the increase of Er3+ concentration. These processes are beneficial to increase the number reversal of the particles in the upper and lower energy levels of the laser and enhance the fluorescence emission of 2.7 mu m. The Er3+/Tm3+ Co doped germanate glass is prepared, and it is found that Tm3+ can sensitize Er3+ particles effectively and significantly enhance the emission of 2.7 u m. The energy transfer mechanism between Tm3+ and Er3+ is discussed and the energy transfer micro parameters and energy transfer efficiency between Tm3+ and Er3+ are calculated. The results show that the energy transfer coefficient (2.94 x 10-39cm6/s) of Er3+: 4I13/2 to Tm3+ is far greater than Er3+: 4I11/2 > Tm3+: (0.93 x 10-40). Through the rate equation analysis, further confirmed 2.7 micron, Er3+-Yb3+ Co doped germanate glass was prepared by 1.8 and 1.53 m fluorescence. Under 980nm wavelength, 2.7 mu m, 1.53 mu m and upconversion emission intensity were significantly higher than those of Er3+ single doped samples. With the increase of Yb3+ concentration, the emission intensity of the samples increased monotonically, and no obvious fluorescence quenching was found. Then Er3+ and Yb were discussed. The energy transfer mechanism of 3+, Yb3+: 2F5/2 to Er3+: the micro parameters of energy transfer of 4I11/2 are as high as 1.42 x 10-39 cm6/s.. Finally, the spectral properties of 2.9 mu m of Ho3+/Yb3+ Co doped germanate glass are studied. Based on the absorption spectrum and J-O theory, the Judd-Ofelt intensity parameters and radiating properties of Ho3+ are calculated, and Ho3+: Ho3+: 2.9 micron transition (2.9 mu) self is found. The radiation transition probability up to 36.66 s-1. in the infrared fluorescence spectrum shows that when the concentration ratio of Ho3+: Yb3+ is 0.1:2, the fluorescence of 2.9 mu m is the strongest. The calculated 2.9 mu m emission cross section is up to 8.58 x 10-21 cm2, and the gain at 2866-3000nm is positive when the number P of the reverse is P. The Ho3+ and Yb3 are discussed by upconversion, near infrared and mid infrared spectroscopy. The energy transfer mechanism of + + is calculated. The energy transfer efficiency and energy transfer coefficient of Yb3+ to Ho3+ are calculated, 35.8% and 4.06 x 10-40 cm6/s. respectively. Finally, the energy transfer coefficient of Yb3+ to Ho3+ with different Ho3+ concentrations is calculated by YokotaTanimoto model. It is found that with the increase of Ho3+ concentration, the value gradually decreases, which indicates that the number of particles at the 5I6 level is dependent on the number of Ho3+. The decrease of Ho3+ concentration is consistent with the experimental results.
【學位授予單位】:中國計量學院
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:TQ171.112
【相似文獻】
相關期刊論文 前10條
1 肖卓豪;陳媛媛;左成鋼;盧安賢;;爐料浸泡法制備低羥基含量鍺酸鹽玻璃[J];中國有色金屬學報;2008年08期
2 王榮飛;周大成;楊正文;宋志國;張景繪;邱建備;;鉍摻雜鍺酸鹽玻璃超寬帶近紅外發(fā)光性質(zhì)及機理[J];硅酸鹽學報;2013年07期
3 畢瑗;鍺酸鹽玻璃化學分析方法[J];玻璃與搪瓷;1991年03期
4 嚴俊璽;;稀土鋁鍺酸鹽玻璃[J];稀土信息;1992年03期
5 曹國喜;范有余;張龍;胡和方;干福熹;;含氟化物的鋇鎵鍺酸鹽玻璃形成及其熱性能[J];硅酸鹽學報;2014年01期
6 張偉南;王建文;錢奇;徐善輝;楊中民;;摻銩鍺酸鹽玻璃光纖預制棒的化學腐蝕拋光對芯包界面缺陷的影響[J];材料研究與應用;2010年04期
7 王榮飛;周大成;宋志國;楊正文;尚吉花;樓凱;尹兆益;邱建備;;鉺摻雜鍺酸鹽玻璃的顏色可調(diào)上轉換發(fā)光性質(zhì)研究(英文)[J];硅酸鹽學報;2011年01期
8 張常建;湯剛;盧安賢;;堿金屬離子對二元鍺酸鹽玻璃結構的影響[J];武漢理工大學學報;2011年03期
9 陳芬;徐星辰;周亞訓;;鉍鍺酸鹽玻璃中鉺離子的上轉換光譜特性[J];光電工程;2012年03期
10 李玉林,譚忠;鋁、鈣、鍺酸鹽紅外光學玻璃的研究[J];硅酸鹽通報;1983年01期
相關會議論文 前9條
1 張偉南;王建文;錢奇;徐善輝;楊中民;;摻銩鍺酸鹽玻璃光纖預制棒的化學腐蝕拋光對芯包界面缺陷的影響[A];低碳技術與材料產(chǎn)業(yè)發(fā)展研討會論文集[C];2010年
2 吳曉冬;張永輝;饒金華;杜永娟;陳國榮;;Tb,Pr摻雜重金屬鍺酸鹽玻璃的光學性能研究[A];中國硅酸鹽學會2003年學術年會論文摘要集[C];2003年
3 林瓊斐;夏海平;張約品;王金浩;章踐立;賀賽龍;;摻Tm~(3+)鍺酸鹽玻璃的光譜參數(shù)計算[A];中國硅酸鹽學會特種玻璃分會第三屆全國特種玻璃會議論文集[C];2007年
4 貝家芳;錢顧杰;張俊標;楊云霞;陳國榮;;Ce~(3+)摻雜鍺酸鹽玻璃的發(fā)光性能[A];2005中國硅酸鹽學會特種玻璃分會學術研討會會議論文集[C];2005年
5 夏方;趙東輝;饒金華;楊云霞;陳國榮;S.Baccaro;A.Cecilia;;Ce~(3+)摻雜重金屬鍺酸鹽玻璃透射光譜的輻射誘導效應[A];第五屆中國功能材料及其應用學術會議論文集Ⅰ[C];2004年
6 馬紅萍;;摻Er~(3+)重金屬氧氟鍺酸鹽玻璃的上轉換發(fā)光研究[A];中國硅酸鹽學會特種玻璃分會第三屆全國特種玻璃會議論文集[C];2007年
7 肖卓豪;陳媛媛;盧安賢;;含鋯鍺酸鹽玻璃陶瓷的析晶行為與顯微結構[A];第一屆兩岸三地綠色材料學術研討會論文集[C];2008年
8 夏海平;林瓊斐;王金浩;張約品;楊鋼鋒;張勤遠;;Tm~(3+)摻雜GeO_2-AlF_3-Li_2O-BaF_2-La_2O_3玻璃的光譜特性[A];中國硅酸鹽學會特種玻璃分會第三屆全國特種玻璃會議論文集[C];2007年
9 黃立輝;劉行仁;劉慎薪;徐邁;張家鏵;許武;林久令;;978nm激發(fā)下Er~(3+),Yb~(3+)共摻雜的鈣鋁鍺酸鹽玻璃的紅外和可見上轉換發(fā)光性質(zhì)[A];第九屆全國發(fā)光學術會議摘要集[C];2001年
相關碩士學位論文 前10條
1 魏濤;摻稀土鍺酸鹽玻璃的中紅外光譜性能研究[D];中國計量學院;2015年
2 李秀明;鍺酸鹽氟氧化物玻璃的制備及性能研究[D];浙江大學;2010年
3 張常建;鍺反常及其相關問題研究[D];中南大學;2011年
4 張杰;特殊波段鉀鈉離子交換鍺酸鹽玻璃波導放大器[D];大連工業(yè)大學;2012年
5 武英;稀土元素摻雜鍺酸鹽激光玻璃的研究[D];長春理工大學;2013年
6 鄭燕峰;稀土摻雜的中紅外碲酸鹽和鍺酸鹽玻璃材料的制備及光譜性質(zhì)研究[D];大連海事大學;2011年
7 溫馨;2μm波段鋇鎵鍺酸鹽玻璃單模光纖的研究[D];華南理工大學;2015年
8 龔樺;多稀土共摻雜鋁鍺酸鹽光學玻璃的上轉換熒光特異性與色彩變換[D];大連工業(yè)大學;2011年
9 王晶;稀土摻雜透紅外鍺酸鹽玻璃光纖材料的研究[D];長春理工大學;2011年
10 趙衍琪;鉍摻雜近紅外發(fā)光鉭鍺酸鹽玻璃的基礎研究[D];華南理工大學;2015年
,本文編號:2047082
本文鏈接:http://sikaile.net/kejilunwen/huaxuehuagong/2047082.html