MWCNTs納米復(fù)合材料模擬酶催化的生物燃料電池及生物傳感器研究
本文選題:模擬酶 + 葡萄糖 ; 參考:《寧夏大學(xué)》2017年碩士論文
【摘要】:當(dāng)今,面對全球環(huán)境惡化和能源危機(jī)的挑戰(zhàn),人們在不斷探尋利用可再生能源、生物質(zhì)能源以及可變廢為寶的清潔能源技術(shù)。生物燃料電池(BFC)被認(rèn)為是具有發(fā)展?jié)摿Φ男乱淮娔苎b置,傳統(tǒng)的BFC是利用酶或微生物作為催化劑在環(huán)境友好的條件下將生物質(zhì)燃料中的化學(xué)能轉(zhuǎn)化為電能。雖然天然酶具有高度專一性和催化效率高等特點,但是酶電極容易受環(huán)境條件的影響,因而限制了 BFC的發(fā)展。為了克服酶電極的固有缺點,基于無機(jī)納米材料為催化劑的模擬酶生物燃料電池得到發(fā)展。與天然酶相比,無機(jī)納米材料模擬酶具有更為突出的優(yōu)點,如制備成本低,易存儲,以及組成結(jié)構(gòu)可控等特點。因此開發(fā)低成本,生物相容性好,具有高催化活性的模擬酶納米材料備受青睞。目前,已報道的模擬酶有:葡萄糖模擬酶、過氧化物模擬酶、氧化物模擬酶、以及超氧化物歧化模擬酶等。因此可以利用過氧化物模擬酶材料構(gòu)建生物傳感器,來檢測樣品中的H202,多壁碳納米管(MWCNTs)具有大的比表面積、空腔結(jié)構(gòu)以及特殊的電學(xué)性質(zhì),被看做是理想的負(fù)載相,用于負(fù)載或填載其它結(jié)構(gòu)的材料,得到具有特殊性質(zhì)的復(fù)合納米材料。基于此,論文采用油胺還原法、水熱法、水沉淀法分別合成了 Au nanowires、CuS/MWCNTs納米復(fù)合物、Ce02/MWCNTs納米復(fù)合物,構(gòu)建了模擬酶BEC和模擬酶生物傳感器。具體的研究內(nèi)容如下:通過油胺(Oleylamine)還原法制備了一維金納米線(Au nanowires),并將其與酸化的MWCNTs通過靜電吸附作用將其層層組裝到玻碳電極(GCE)上,得到一種可催化氧化葡萄糖的新型非酶生物燃料電池陽極(Au nanowires-MWCNTs/GCE)。結(jié)果表明:Au nanowires-MWCNTs/GCE對葡萄糖的電催化性能比單純Au nanowires或MWCNTs修飾電極優(yōu)良。基于此,以Au nanowires-MWCNTs/GCE電極為陽極,以電沉積Pt膜電極(Pt/GCE)為陰極,構(gòu)建非酶葡萄糖/O2生物燃料電池,測試結(jié)果表明所構(gòu)建的生物燃料電池的開路電位(OCP)為0.57V,在0.44V下呈現(xiàn)的最大功率密度(Pmmax)為0.28mW.cm-2。以CuC12為Cu源,L-半胱氨酸作為S源和還原劑,混酸處理的MWCNTs為原料,采用水熱法一步合成了串珠狀的具有葡萄糖模擬酶活性的CuS/MWCNTs納米復(fù)合物。將CuS/MWCNTs納米復(fù)合物修飾到GCE上,作為一種可催化氧化葡萄糖的新型非酶生物燃料電池陽極(CuS/MWCNTs/GCE)。結(jié)果表明:CuS/MWCNTs/GCE表現(xiàn)出比單純CuS或MWCNTs修飾電極對葡萄糖擁有更優(yōu)良的電催化性能。基于此,以CuS/MWCNTs/GCE為陽極,以Pt/GCE為陰極,構(gòu)建非酶葡萄糖/O2生物燃料電池,測試結(jié)果表明所構(gòu)建的生物燃料電池的OCP為0.87 V,在0.77V下呈現(xiàn)的 Pmax 為 0.22 mW·cm-2。利用水沉淀法合成了 Ce02/MWCNTs納米復(fù)合物,利用氧化鈰納米粒子(Ce02NPs)具有的過氧化氫模擬酶性質(zhì),以Ce02/MWCNTs納米復(fù)合物為模擬酶催化劑,構(gòu)建非酶電化學(xué)生物傳感器。結(jié)果表明,由于MWCNTs具有的特有性質(zhì)使CeO2NPs包覆在MWCNTs表面,二者間的協(xié)同作用使該傳感器對H202具有良好的電化學(xué)催化性能,并且該傳感器具有良好的重復(fù)性和穩(wěn)定性。采用方波伏安法(SWV)對H202進(jìn)行了檢測,可以得到在1.0×10-6~1O×10-3mol·L-1濃度范圍內(nèi),H2O2的還原峰電流與其濃度呈良好的線性關(guān)系,對應(yīng)的線性方程為△I(μA)=0.82 + 0.10 logc(mol·L-1),線性相關(guān)系數(shù) R = 0.994,檢測限為 2×10-8mol·L-1(S/N=3)。
[Abstract]:Nowadays, facing the challenges of global environmental degradation and energy crisis, people are constantly exploring clean energy technologies using renewable energy, biomass energy and variable waste. Biofuel battery (BFC) is considered to be a new generation of electric energy devices with potential for development. The traditional BFC is the use of enzyme or microorganism as a catalyst in the environment friend. The chemical energy in biomass fuels is converted into electrical energy under good conditions. Although natural enzymes have high specificity and high catalytic efficiency, the enzyme electrode is easily affected by the environmental conditions, thus limiting the development of BFC. In order to overcome the inherent disadvantages of the enzyme electrode, the simulated enzyme biological combustion based on the nano material without machine is used as the catalyst. Compared with natural enzymes, inorganic nanomaterial analog enzymes have more outstanding advantages, such as low preparation cost, easy storage and controllable composition. Therefore, the development of low cost, good biocompatibility and high catalytic activity of analog enzyme nanoscale is favored. At present, the simulated enzyme has been reported as glucose. Mimic enzymes, peroxidase mimics, oxide analogue enzymes, and superoxide dismutase mimic enzymes. Therefore, a biosensor can be constructed using a peroxidase mimic material to detect H202 in the sample. The multi wall carbon nanotube (MWCNTs) has a large specific surface area, cavity structure, and special electrical properties. It is regarded as an ideal load. In this paper, Au nanowires, CuS/MWCNTs nanocomposites, and Ce02/MWCNTs nanocomposites were synthesized by oleamine reduction, hydrothermal method and water precipitation method, and the simulated enzyme BEC and analog enzyme biosensors were constructed. The contents are as follows: the Au nanowires was prepared by the oleamine (Oleylamine) reduction method, and it was assembled on the glassy carbon electrode (GCE) with the acidified MWCNTs by electrostatic adsorption, and a new type of non enzyme bio fuel cell anode (Au nanowires-MWCNTs/GCE) that could catalyze the oxidation of glucose (Au nanowires-MWCNTs/GCE) was obtained. The results showed that: Au n. The electrocatalytic performance of anowires-MWCNTs/GCE on glucose is better than that of pure Au nanowires or MWCNTs modified electrode. Based on this, the Au nanowires-MWCNTs/GCE electrode as the anode, the electrodeposition of Pt membrane electrode (Pt/GCE) as the cathode and the Gou Jianfei enzyme glucose /O2 biofuel battery, the test results show the open circuit potential of the biofuel battery (O). CP) for 0.57V, the maximum power density (Pmmax) presented under 0.44V is 0.28mW.cm-2. with CuC12 as the Cu source, L- cysteine as a S source and a reductant, and the MWCNTs of the mixed acid is used as the raw material. The CuS/ MWCNTs nanocomposite with the glucose mimic enzyme activity is synthesized by the hydrothermal method. As a new type of non enzyme biofuel battery anode (CuS/MWCNTs/GCE), which can catalyze the oxidation of glucose, the results show that CuS/MWCNTs/GCE shows better electrocatalytic performance than pure CuS or MWCNTs modified electrode. Based on this, the non enzyme glucose /O2 organism is constructed with CuS/MWCNTs/GCE as the anode and Pt/GCE as the cathode. The test results show that the OCP of the biofuel battery is 0.87 V, and the Pmax is 0.22 mW. Cm-2. under 0.77V by using the water precipitation method to synthesize the Ce02/MWCNTs nanocomposite. Using the cerium oxide nanoparticles (Ce02NPs) with the properties of the hydrogen peroxide analogue enzyme, the Ce02/MWCNTs nanocomposite is used as the analog enzyme catalyst. A non enzyme electrochemical biosensor was constructed. The results showed that the CeO2NPs was coated on the MWCNTs surface due to the unique properties of MWCNTs. The synergism between the two made the sensor have good electrochemical catalytic performance for H202, and the sensor had good reproducibility and stability. H202 was examined by square wave voltammetry (SWV). In the range of 1 x 10-6 ~ 1O x 10-3mol / L-1, the reduction peak current of H2O2 has a good linear relationship with its concentration, the corresponding linear equation is delta I (mu A) =0.82 + 0.10 logC (mol L-1), the linear correlation coefficient R = 0.994, and the detection limit of 2 * 10-8mol.
【學(xué)位授予單位】:寧夏大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TB33;TM911.4
【參考文獻(xiàn)】
相關(guān)期刊論文 前7條
1 劉劍洪;吳雙泉;何傳新;卓海濤;朱才鎮(zhèn);李翠華;張黔玲;;碳納米管和碳微米管的結(jié)構(gòu)、性質(zhì)及其應(yīng)用[J];深圳大學(xué)學(xué)報(理工版);2013年01期
2 陳迪航;李綿慶;;過氧化氫的應(yīng)用領(lǐng)域與主要生產(chǎn)方法[J];化工技術(shù)與開發(fā);2011年03期
3 覃奇賢;劉淑蘭;;電極的極化和極化曲線(Ⅱ)——極化曲線[J];電鍍與精飾;2008年07期
4 劉強(qiáng);許鑫華;任光雷;王為;;酶生物燃料電池[J];化學(xué)進(jìn)展;2006年11期
5 賈鴻飛,謝陽,王宇新;生物燃料電池[J];電池;2000年02期
6 楊曉云,莫金垣,詹淳;現(xiàn)代方波伏安法[J];分析測試學(xué)報;1998年03期
7 董紹俊;;化學(xué)修飾電極[J];化學(xué)通報;1981年12期
相關(guān)博士學(xué)位論文 前1條
1 羅志敏;石墨烯/無機(jī)納米復(fù)合材料的制備及其催化傳感應(yīng)用研究[D];復(fù)旦大學(xué);2012年
相關(guān)碩士學(xué)位論文 前1條
1 孫佳;食品中過氧化氫的檢測方法研究[D];吉林農(nóng)業(yè)大學(xué);2014年
,本文編號:1948623
本文鏈接:http://sikaile.net/kejilunwen/huaxuehuagong/1948623.html