聚乙烯亞胺有機溶劑納濾膜微結(jié)構(gòu)調(diào)控與性能優(yōu)化
發(fā)布時間:2018-05-23 07:30
本文選題:聚乙烯亞胺 + 界面聚合; 參考:《鄭州大學》2015年碩士論文
【摘要】:有機溶劑納濾(OSN)是一種新興的、壓力驅(qū)動的膜分離過程,它主要適用于分子量范圍在200-1000 Da之間的粒子與分子在有機相中的分離。由于其操作簡便、綠色高效的優(yōu)點,有機溶劑納濾膜的發(fā)展受到廣泛關(guān)注。因此,制備具有可控傳遞性能的有機溶劑納濾膜,以適應(yīng)復(fù)雜溶劑體系是目前有機溶劑納濾技術(shù)的重要課題。有機溶劑納濾膜的納濾特性取決于膜微結(jié)構(gòu),而膜微結(jié)構(gòu)又由膜材料和制備方法所決定。論文旨在利用交聯(lián)與雜化耦合技術(shù),通過界面聚合法將納米顆粒/管填充到聚合物(聚乙烯亞胺,PEI)基質(zhì)中調(diào)控其微結(jié)構(gòu),獲得具有可控傳遞特性的有機溶劑納濾復(fù)合膜。采用SEM、TEM、FTIR、TGA、接觸角測試、溶劑吸附量和面積溶脹等對膜化學組成及其微結(jié)構(gòu)進行系統(tǒng)表征,并測定膜的通量及截留率。論文主要探索膜微結(jié)構(gòu)的形成條件和調(diào)控機制,以及有機溶劑納濾膜的材料-微結(jié)構(gòu)-納濾特性之間的內(nèi)在關(guān)系,獲得高性能的有機溶劑納濾膜的制備方法。具體研究工作如下:(1)受仿生礦化啟示,PEI催化無機前體正硅酸乙酯(TEOS)水解原位生成無機納米顆粒,隨后交聯(lián)制備出復(fù)合有機溶劑納濾雜化膜。對所制備的膜進行系統(tǒng)表征和測試。結(jié)果顯示:引入分散均勻的無機納米顆粒,限制了鏈段運動性,提高膜的熱穩(wěn)定性和抗溶脹性,促進極性溶劑在膜中快速傳遞。同時,無機納米顆粒與膜基質(zhì)間良好的界面相容性,可提高膜的截留和長時穩(wěn)定性。(2)環(huán)糊精(CDs)具有親水外壁和疏水內(nèi)腔,有利于構(gòu)建親/疏水通道來促進極性/非極性溶劑傳遞。本研究在PEI基質(zhì)中引入不同尺寸和官能團的CDs,制備出雙通道體系結(jié)構(gòu)的復(fù)合有機溶劑納濾膜,并對膜進行表征和測試。探索了多尺度協(xié)同效應(yīng)及其作用機制,實現(xiàn)可控傳遞特性的有機溶劑納濾膜的制備。結(jié)果顯示:具備疏水內(nèi)腔的CDs可在膜內(nèi)形成疏水傳遞通道,有效提高了非極性溶劑的傳遞;隨著CDs內(nèi)腔尺寸的增大,有利于較小溶劑分子的傳遞。同時,通過調(diào)節(jié)改性CDs和PEI界面處的靜電相互作用,可調(diào)控膜內(nèi)自由體積,從而形成可控的親水通道以供極性溶劑快速傳遞。其中,在10 bar下,當β-CD-NH含量增加到1.5 wt%時,異丙醇和正庚烷通量分別為41.6和24.2 L m-2 h-1,對PEG400的截留率高達94.9%以上。(3)埃洛石納米管(HNTs)在膜中的定向排布有利于構(gòu)建連續(xù)的溶劑傳遞通道。本研究將β-CDs改性的HNTs引入到PEI基質(zhì)中,制備出高傳遞特性的復(fù)合有機溶劑納濾膜。探索膜微結(jié)構(gòu)的形成條件和過程機制,獲得強化傳遞過程的理論和方法。結(jié)果顯示:由于成膜過程和疏水相互作用,改性的HNTs垂直豎立在膜表面,可有效促進極性溶劑的傳遞。同時,改性后HNTs被高分子層覆蓋,形成良好的界面兼容性,可提高膜的截留和長時穩(wěn)定性。其中,在10 bar下,當HNTs-β-CD含量增加到2.0 wt%,異丙醇通量為67.8 L m-2 h-1,對PEG200的截留率高達94.3%。
[Abstract]:Organic solvent nanofiltration (OSNN) is a new, pressure-driven membrane separation process, which is mainly suitable for the separation of particles and molecules in the range of 200-1000 Da in organic phase. Due to its advantages of simple operation and green efficiency, the development of organic solvent nanofiltration membrane has received extensive attention. Therefore, the preparation of organic solvent nanofiltration membranes with controllable transfer properties to adapt to complex solvent systems is an important subject of organic solvent nanofiltration technology. The nanofiltration characteristics of organic solvent nanofiltration membrane depend on the membrane microstructure which is determined by the membrane material and preparation method. The aim of this paper is to control the microstructure of polymer (polyethylene imide PEI) matrix by interfacial polymerization by cross-linking and hybrid technology, and to obtain organic solvent nanofiltration composite membrane with controllable transfer property. The chemical composition and microstructure of the membrane were systematically characterized by means of SEMTEM FTIR TGA, contact angle test, solvent adsorption capacity and area swelling, and the flux and retention rate of the membrane were measured. In this paper, the formation conditions and regulation mechanism of membrane microstructure, and the intrinsic relationship between the material of organic solvent nanofiltration membrane, microstructure-nanofiltration characteristics, and the preparation method of high performance organic solvent nanofiltration membrane were studied. The specific research work is as follows: (1) PEI catalyzes the hydrolysis of inorganic precursor ethyl orthosilicate (TEOS) to form inorganic nanoparticles in situ, and then crosslinks to prepare composite organic solvent nanofiltration hybrid membrane. The prepared membranes were systematically characterized and tested. The results show that the introduction of inorganic nanoparticles with uniform dispersion limits the mobility of the chain segment, improves the thermal stability and anti-swelling property of the film, and promotes the rapid transfer of polar solvents in the film. At the same time, the good interfacial compatibility between inorganic nanoparticles and the membrane matrix can improve the membrane retention and long-term stability. 2) the cyclodextrin (CDss) has hydrophilic outer wall and hydrophobic cavity. It is advantageous to construct hydrophilic / hydrophobic channel to promote polar / nonpolar solvent transfer. In this study, the composite organic solvent nanofiltration membrane with two-channel system structure was prepared by introducing different size and functional groups into the PEI matrix, and the membrane was characterized and tested. The multi-scale synergistic effect and its mechanism were explored to prepare organic solvent nanofiltration membrane with controllable transfer characteristics. The results show that CDs with hydrophobic cavity can form hydrophobic transfer channel in the film, which can effectively improve the transfer of non-polar solvent, and with the increase of the size of CDs cavity, it is advantageous to the transfer of small solvent molecules. At the same time, by adjusting the electrostatic interaction between the modified CDs and the PEI interface, the free volume of the film can be regulated, thus a controllable hydrophilic channel can be formed for the rapid transfer of polar solvents. When the content of 尾 -CD-NH increased to 1.5 wt% at 10 bar, The flux of isopropanol and n-heptane were 41.6 and 24.2 L m-2 h-1, respectively, and the rejection rate of PEG400 was as high as 94.9%. In this study, 尾 -CDs modified HNTs was introduced into the PEI matrix to prepare a composite organic solvent nanofiltration membrane with high transfer characteristics. The formation conditions and process mechanism of membrane microstructure were explored, and the theory and method of enhanced transfer process were obtained. The results show that the modified HNTs is perpendicular to the surface of the film due to the interaction between film formation and hydrophobicity, which can effectively promote the transfer of polar solvents. At the same time, the modified HNTs is covered by polymer layer, forming good interfacial compatibility, which can improve the retention and long term stability of the membrane. At 10 bar, when the content of HNTs- 尾 -CD increased to 2.0 wt, the isopropanol flux was 67.8 L m ~ (-2) h-1, and the rejection rate of PEG200 was as high as 94.3%.
【學位授予單位】:鄭州大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:TQ051.893
【參考文獻】
相關(guān)期刊論文 前1條
1 邱實;吳禮光;張林;陳歡林;高從X&;;界面聚合工藝條件對反滲透復(fù)合膜性能的影響[J];化工學報;2008年08期
相關(guān)博士學位論文 前1條
1 趙卷;界面聚合法制備分離CO_2固定載體復(fù)合膜[D];天津大學;2007年
相關(guān)碩士學位論文 前2條
1 方鵬;界面聚合制備新型結(jié)構(gòu)聚酰胺復(fù)合納濾膜[D];北京化工大學;2011年
2 馬躍華;界面聚合制備聚酰胺復(fù)合納濾膜[D];北京化工大學;2010年
,本文編號:1923824
本文鏈接:http://sikaile.net/kejilunwen/huaxuehuagong/1923824.html
最近更新
教材專著