機械攪拌槽混合數(shù)值模擬及實驗研究
本文選題:機械攪拌槽 + 數(shù)值模擬 ; 參考:《廣西大學(xué)》2017年碩士論文
【摘要】:隨著工業(yè)的不斷發(fā)展和進步,機械攪拌槽在工業(yè)的諸多領(lǐng)域得到了廣泛應(yīng)用,特別是在化工、食品、冶金、造紙、和污水處理等領(lǐng)域,是應(yīng)用最廣泛的化工設(shè)備之一。機械攪拌槽按不同工業(yè)要求常用于介質(zhì)混合溶解、制備懸浮液、促進傳質(zhì)、強化傳熱等操作,具有制作方便、操作簡單、適應(yīng)性強等優(yōu)點。但目前機械攪拌槽設(shè)計與制作大多依靠于經(jīng)驗,對攪拌槽設(shè)計參數(shù)、攪拌規(guī)律等認識不足,缺乏對攪拌過程的直觀了解,無法保證和滿足不同的工業(yè)要求。隨著計算機流體力學(xué)(CFD)相關(guān)軟件的發(fā)展,對攪拌過程進行數(shù)值模擬成為了現(xiàn)實,利用CFD軟件對攪拌槽的攪拌過程進行模擬,可直觀認識攪拌過程中攪拌效果,可大大縮短攪拌槽的設(shè)計成本,對攪拌槽參數(shù)的設(shè)計具有一定促進作用。本文利用CFD軟件對方形攪拌槽、圓形攪拌槽進行數(shù)值模擬,利用RNG k-ε湍流模型、組分輸運模型、滑移網(wǎng)格模型對攪拌槽進行瞬態(tài)數(shù)值模擬。對攪拌槽的槳葉角度、槳葉離底高度、槳葉寬度、槳葉直徑、加藥點等參數(shù)分別進行單因素模擬,并根據(jù)單因素分析結(jié)果進行5因素4水平正交數(shù)值模擬分析,根據(jù)混合時間、攪拌功率以及單位體積混合能綜合評判攪拌槽混合效果,并對不同攪拌槽的結(jié)構(gòu)參數(shù)提出合理化建議。對攪拌槽的最優(yōu)參數(shù)組合進行單向耦合靜力學(xué)分析,結(jié)果顯示槳葉受到的最大應(yīng)力遠小于材料的許用應(yīng)力值,可確保最優(yōu)組合槳葉的正常運轉(zhuǎn)。分別對圓形攪拌槽、方形攪拌槽中的槳葉角度、槳葉離底高度、轉(zhuǎn)速因素進行實驗分析,獲取監(jiān)測點的示蹤劑濃度,并與仿真實驗中同一位置監(jiān)測點的濃度數(shù)據(jù)進行對比。實驗是利用電導(dǎo)率傳感器測量電導(dǎo)率值,經(jīng)公式轉(zhuǎn)換為溶液濃度值,通過曲線相關(guān)系數(shù)、混合時間、溶液最終濃度等參數(shù)與仿真實驗獲取的數(shù)據(jù)綜合比較。結(jié)果顯示:實驗數(shù)據(jù)與仿真數(shù)據(jù)的曲線相關(guān)系數(shù)較高,整體趨勢基本吻合;混合時間、溶液最終濃度均相差不大。
[Abstract]:With the continuous development and progress of industry, mechanical agitator has been widely used in many fields of industry, especially in chemical, food, metallurgy, papermaking, sewage treatment and other fields, is one of the most widely used chemical equipment. Mechanical agitator is often used in medium mixing dissolution, preparation of suspension, mass transfer, heat transfer and other operations according to different industrial requirements. It has the advantages of convenient manufacture, simple operation, strong adaptability and so on. However, at present, the design and manufacture of mechanical agitator mostly depend on experience, lack of understanding of the design parameters and rules of mixing tank, lack of intuitive understanding of the mixing process, and can not guarantee and meet different industrial requirements. With the development of computer fluid dynamics (CFD) software, the numerical simulation of mixing process has become a reality. Using CFD software to simulate the mixing process of stirred tank, can intuitively understand the mixing effect in mixing process. It can greatly shorten the design cost of agitator and promote the design of agitator parameters. In this paper, CFD software is used to simulate the square and circular stirred cells, and RNG k- 蔚 turbulence model, component transport model and sliding grid model are used to simulate the transient numerical simulation of the stirred tank. The parameters such as blade angle, blade height, blade width, blade diameter and charge point were simulated by single factor simulation, and 5 factors and 4 horizontal orthogonal numerical simulation were carried out according to the results of single factor analysis, according to mixing time, Mixing power and unit volume mixing can comprehensively evaluate the mixing effect of mixing tank and give some reasonable suggestions on the structural parameters of different mixing tanks. The unidirectional coupling statics analysis of the optimal parameter combination of the stirred tank shows that the maximum stress of the blade is much less than the allowable stress of the material, which can ensure the normal operation of the optimal combination blade. The factors of blade angle, blade height and rotational speed in circular stirred tank and square stirred tank are analyzed experimentally, the tracer concentration of monitoring point is obtained, and the concentration data of monitoring point at the same position in simulation experiment are compared. The experiment uses the conductivity sensor to measure the conductivity value, which is converted into the solution concentration value by the formula. The parameters such as curve correlation coefficient, mixing time, solution final concentration and so on are compared with the data obtained from the simulation experiment. The results show that the curve correlation coefficient between the experimental data and the simulation data is high, and the overall trend is basically consistent, and the mixing time and the final concentration of the solution are not different.
【學(xué)位授予單位】:廣西大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TQ051.72
【參考文獻】
相關(guān)期刊論文 前10條
1 張亞東;肖剛;王青子;李志超;;基于正交試驗法的同步感應(yīng)線圈發(fā)射器關(guān)鍵設(shè)計參數(shù)選擇[J];高電壓技術(shù);2016年09期
2 孟曙光;熊萬里;王少力;呂浪;鄭良鋼;;有限體積法與正交試驗法相結(jié)合的動靜壓軸承結(jié)構(gòu)優(yōu)化設(shè)計[J];中國機械工程;2016年09期
3 陳麗娟;柳福智;岳強兵;;正交試驗法優(yōu)化微波協(xié)同雙水相提取甘草中總黃酮的工藝[J];中國藥房;2016年04期
4 梁瑛娜;高殿榮;拜亮;;雙層槳攪拌槽內(nèi)層流流場與混合時間的數(shù)值模擬[J];機械工程學(xué)報;2015年16期
5 梁瑛娜;高殿榮;拜亮;;偏心組合槳攪拌槽內(nèi)層流混合過程的數(shù)值模擬[J];化工進展;2014年12期
6 蘇華山;楊國來;張立強;陳萍;李仁年;;加油機溢流閥流體振動噪聲分析與優(yōu)化[J];振動與沖擊;2013年23期
7 王曉瑾;彭炯;楊伶;陳晉南;;行星式攪拌釜內(nèi)固液混合時間的數(shù)值計算[J];計算機與應(yīng)用化學(xué);2012年03期
8 姜超;邵志良;;近似模型方法在復(fù)雜結(jié)構(gòu)優(yōu)化設(shè)計問題中的應(yīng)用[J];上海汽車;2010年09期
9 陳麗梅;程敏熙;肖曉芳;黃佐華;;鹽溶液電導(dǎo)率與濃度和溫度的關(guān)系測量[J];實驗室研究與探索;2010年05期
10 樊建華;王運東;費維揚;;Large Eddy Simulations of Flow Instabilities in a Stirred Tank Gen-erated by a Rushton Turbine[J];Chinese Journal of Chemical Engineering;2007年02期
相關(guān)博士學(xué)位論文 前1條
1 周國忠;攪拌槽內(nèi)流動與混合過程的實驗研究及數(shù)值模擬[D];北京化工大學(xué);2002年
相關(guān)碩士學(xué)位論文 前8條
1 孫亞麗;攪拌槽內(nèi)部流場及固液懸浮特性的數(shù)值模擬分析[D];安徽理工大學(xué);2015年
2 齊巖;草酸鈰攪拌槽混合過程的CFD模擬及結(jié)構(gòu)優(yōu)化[D];內(nèi)蒙古科技大學(xué);2014年
3 王啟龍;機械攪拌制備SiC_p/2014復(fù)合材料及攪拌過程中流場的數(shù)值模擬[D];吉林大學(xué);2014年
4 拜亮;層流攪拌槽混合時間的數(shù)值模擬與實驗研究[D];燕山大學(xué);2011年
5 王艷廣;涵道螺旋槳兩棲飛行器的格柵翼氣動特性研究[D];湖南大學(xué);2010年
6 吳云峰;雙向流固耦合兩種計算方法的比較[D];天津大學(xué);2009年
7 梁瑛娜;直—斜葉組合槳攪拌槽內(nèi)三維流場的數(shù)值模擬與實驗研究[D];燕山大學(xué);2008年
8 馮偉;機械攪拌反應(yīng)器三維流場的數(shù)值模擬[D];哈爾濱工業(yè)大學(xué);2007年
,本文編號:1900338
本文鏈接:http://sikaile.net/kejilunwen/huaxuehuagong/1900338.html