高穩(wěn)定性YSZ-LSCrF非對(duì)稱平板氧分離膜和反應(yīng)器性能研究
本文選題:相轉(zhuǎn)化流延 + 非對(duì)稱陶瓷透氧膜。 參考:《中國(guó)科學(xué)技術(shù)大學(xué)》2016年博士論文
【摘要】:陶瓷透氧膜材料由于能夠同時(shí)傳導(dǎo)氧離子和電子,在氧分壓梯度下能夠選擇性地使氧氣通過(guò)。將此種材料制備成透氧膜,可以用來(lái)從空氣中分離氧氣,從而改變傳統(tǒng)的工業(yè)制氧工藝。將陶瓷透氧膜與甲烷部分氧化工藝耦合形成陶瓷膜反應(yīng)器,能夠顯著降低合成氣的生產(chǎn)成本,具有極大的經(jīng)濟(jì)與環(huán)境效益。透氧膜要實(shí)現(xiàn)商業(yè)化的應(yīng)用,必須具有較高的氧滲透性能,同時(shí)在苛刻條件下具有足夠的穩(wěn)定性。實(shí)驗(yàn)室早期的研究中已經(jīng)發(fā)現(xiàn),將氧化釔穩(wěn)定的氧化鋯Zr0.84Y0.16O1.92(YSZ)與(LSCrF)復(fù)合形成的雙相混合導(dǎo)體材料具有很好的穩(wěn)定性。采用相轉(zhuǎn)化法將其制備成具有較薄的功能層和厚的指狀孔層構(gòu)成的非對(duì)稱結(jié)構(gòu)的陶瓷膜,能夠顯著提高透氧膜的氧滲透性能。本論文致力于研究非對(duì)稱平板陶瓷透氧膜的相轉(zhuǎn)化法制備和其用于甲烷部分氧化膜反應(yīng)器的研究。第一章主要介紹了陶瓷透氧膜的氧滲透原理和應(yīng)用前景,以及相轉(zhuǎn)化制備非對(duì)稱結(jié)構(gòu)膜的工藝,同時(shí)介紹了平板膜的研究現(xiàn)狀。第二章研究了YSZ-LSCrF非對(duì)稱陶瓷透氧膜的改進(jìn)相轉(zhuǎn)化法制備。由于相轉(zhuǎn)化法制備的陶瓷透氧膜一般具有典型的非對(duì)稱結(jié)構(gòu),包含致密功能層、指狀孔層和覆蓋在指狀孔層表面的孔隙率較低的皮膚層。其中孔隙率較低的皮膚層對(duì)氣體的輸運(yùn)阻力較大,因此去掉皮膚層是提高氧滲透性能(降低膜的濃差極化)的有效方法。因此,論文系統(tǒng)研究了采用石墨犧牲層的相轉(zhuǎn)化流延法制備去皮膚層的YSZ-LSCrF非對(duì)稱平板膜。制備過(guò)程中,上層采用石墨漿料,下層采用YSZ-LSCrF陶瓷漿料,采用雙層流延技術(shù),以水作為絮凝劑制備濕坯,并在空氣中干燥。制備的生坯為三層結(jié)構(gòu):相對(duì)致密的皮膚層為石墨,指狀孔層和海綿層為透氧膜材料陶瓷粉體。在后期的燒結(jié)制備過(guò)程中,石墨層燃燒除去,陶瓷粉體層保留下來(lái),形成的非對(duì)稱陶瓷透氧膜由厚度為850μm的指狀孔層和150μm的致密功能層構(gòu)成。由于制備過(guò)程中石墨犧牲的應(yīng)用,皮膚層被完全除去,指狀孔完全暴露出來(lái),從而大大提高了多孔支撐體層的氣體輸運(yùn)性能。為了進(jìn)行比較,采用單層相轉(zhuǎn)化流延方法制備了含皮膚層的非對(duì)稱平板膜,并對(duì)兩種結(jié)構(gòu)的透氧膜進(jìn)行了氧滲透性能測(cè)試和研究。測(cè)試過(guò)程中,透氧膜的致密側(cè)暴露在空氣中,多孔側(cè)用30ml/min的He吹掃。實(shí)驗(yàn)結(jié)果顯示,850℃,去皮膚層樣品的氧滲透速率為1.08×10-8molcm-2s-1,而含皮膚層樣品的為2.57×10-9molcm-2s-1。在air/CO梯度下對(duì)無(wú)皮膚層的樣品進(jìn)行氧滲透性能實(shí)驗(yàn)測(cè)試,其氧滲透速率在850℃高達(dá)2.26×10-7molcm-2s-1。本章工作的研究結(jié)果顯示,采用改進(jìn)的相轉(zhuǎn)化流延技術(shù)和制備直孔結(jié)構(gòu)多孔支撐體的非對(duì)稱透氧膜,可顯著降低透氧膜的濃差極化和提高透氧膜的氧滲透性能。透氧膜氧滲透速率的提高,對(duì)推動(dòng)陶瓷透氧膜的工業(yè)化應(yīng)用,具有重要意義。第三章研究了表面修飾對(duì)非對(duì)稱平板膜的氧滲透行為的影響。采用改進(jìn)的相轉(zhuǎn)化流延法制備的非對(duì)稱透氧膜,具有較薄的功能層和具有良好氣體輸運(yùn)性能的多孔支撐體,這時(shí)透氧膜的氧滲透過(guò)程決速步驟將變?yōu)楸砻嫜踅粨Q。因此,論文研究了膜的表面修飾,以提高表面氧交換速率和進(jìn)一步提高直孔結(jié)構(gòu)支撐體非對(duì)稱膜的氧滲透性能。實(shí)驗(yàn)制備了三種樣品,對(duì)于直孔結(jié)構(gòu)多孔支撐體的YSZ-LSCrF非對(duì)稱透氧膜,其致密側(cè)采用絲網(wǎng)印刷方法制備一層同質(zhì)的YSZ-LSCrF多孔層,指狀孔內(nèi)浸漬SDC納米粒子。850℃時(shí),在air/He梯度下,對(duì)于僅多孔側(cè)修飾的樣品,膜氧滲透速率為1.5×10-8molcm-2min-1;對(duì)于僅致密側(cè)修飾的樣品,氧滲透速率為2.81×10-8molcm-2min-1;對(duì)于致密膜的表面和多孔支撐體內(nèi)孔均修飾的樣品,氧滲透速率顯著提高到3.83×10-8molcm-2min-1;與未進(jìn)行表面修飾的樣品相比較,氧滲透速率分別提高了~50%、~170%和~270%。當(dāng)將吹掃氣He切換成CO后,三種樣品的氧滲透速率均提高了約一個(gè)數(shù)量級(jí)。對(duì)于兩面修飾均修飾的樣品,air/CO梯度下,850℃,氧滲透速率達(dá)到6.82×10-7mol cm-2 s-1,相當(dāng)于1.00 ml (STP) cm-2 min-1。air/CO梯度下,氧滲透速率的提高,主要?dú)w因于膜兩側(cè)氧分壓梯度的提高。實(shí)驗(yàn)結(jié)果還顯示,測(cè)試后樣品的相組成和微結(jié)構(gòu)均沒(méi)有變化。YSZ-LSCrF平板膜在空氣/還原性氣氛表現(xiàn)出了較高的穩(wěn)定性和氧滲透速率,因此,YSZ-LSCrF透氧膜在膜反應(yīng)器方面具有良好的應(yīng)用前景。第四章研究了基于YSZ-LSCrF平板膜的甲烷部分氧化(partial oxidation of methane, POM)制合成氣過(guò)程。將YSZ-LSCrF非對(duì)稱平板膜用玻璃環(huán)封接劑固定在不銹鋼底座上,膜的有效面積為13 cm2,在膜的下方填放Ni/Al2O3催化劑。甲烷是通過(guò)氧化-重整(oxidation/reforming)兩個(gè)步驟轉(zhuǎn)化為合成氣的。氧化反應(yīng)發(fā)生在膜的表面,CH4、H2、CO與從空氣測(cè)滲透過(guò)來(lái)的氧發(fā)生反應(yīng),生成H2O、CO2;重整反應(yīng)則在催化床上進(jìn)行,CH4與氧化反應(yīng)生成的H2O、CO2反應(yīng),轉(zhuǎn)化為H2、CO。在800℃時(shí)CH4注入量為32ml/min時(shí),CH4與滲透的O2比值接近2:1,CH4轉(zhuǎn)化率高達(dá)90%,CO、H2的選擇性也都超過(guò)95%,氧滲透速率為1.4 mlcm-2 min-1。透氧膜和催化劑在反應(yīng)器條件下能保持良好的穩(wěn)定,基于透氧膜的POM制合成氣新工藝有望得到實(shí)際應(yīng)用。第五章提出并實(shí)驗(yàn)研究了基于陶瓷透氧膜的合成氣和氮?dú)饴?lián)產(chǎn)新工藝。實(shí)驗(yàn)中使用陶瓷透氧膜構(gòu)建膜反應(yīng)器,并將氧分離與甲烷部分氧化整合。將YSZ-LSCrF平板膜用玻璃封接劑固定在不銹鋼底座上,膜的有效面積為6.8 cm2,在膜的下方填放Ni/Al2O3催化劑。實(shí)驗(yàn)發(fā)現(xiàn):在850℃,空氣注入速率55ml/min,甲烷注入速率22ml/min時(shí),甲烷基本全部轉(zhuǎn)化為合成氣,合成氣的生產(chǎn)速率達(dá)10ml/min,甲烷的轉(zhuǎn)化率99%,氫氣的選擇性99%,一氧化碳的選擇性也大于95%以上,同時(shí)在空氣側(cè),獲得的富氮?dú)怏w中的氮?dú)鉂舛雀哌_(dá)99.9%。值得指出的是,基于透氧膜的合成氣/氮?dú)饴?lián)產(chǎn)新工藝具有簡(jiǎn)單高效的特點(diǎn),有可能在合成氨和尿素工業(yè)中得到應(yīng)用。合成氣中H2/CO比例接近2,也可以用于F-T反應(yīng)制備液體燃料,此時(shí)氮?dú)饪梢詥为?dú)用來(lái)為其它反應(yīng)提供氮源。第六章研究了非對(duì)稱平板膜反應(yīng)器短堆(short stack)的POM性能。短堆由兩片YSZ-LSCrF平板膜構(gòu)成,膜總有效面積為16cm2,Ni/Al2O3作為催化劑置于兩片膜之間。在8000C、CH4注入量為30ml/min時(shí)(膜的另一側(cè)暴露于環(huán)境空氣),氧滲透速率為1.25ml cm-2min-1,CH4轉(zhuǎn)化率達(dá)到76%,CO、H2的選擇大于75%。與單片膜反應(yīng)器相比,短堆反應(yīng)器的POM性能略有降低,主要與短堆的結(jié)構(gòu)設(shè)計(jì)(如催化劑的置放、反應(yīng)氣體的分布等)有關(guān)。短堆膜反應(yīng)器的研究,驗(yàn)證了平板膜堆狀反應(yīng)器的可行性,為開(kāi)發(fā)實(shí)用型POM膜反應(yīng)器提供了重要基礎(chǔ)。第七章對(duì)本論文的工作進(jìn)行了總結(jié),并對(duì)下一步的研發(fā)工作提出了建議,尤其對(duì)P O M膜反應(yīng)器技術(shù)的發(fā)展和應(yīng)用作了展望。
[Abstract]:The ceramic oxygen permeable membrane material is capable of conducting oxygen ions and electrons at the same time, and can selectively enable oxygen to pass through the oxygen partial pressure gradient. The material is prepared into oxygen permeable membrane, which can be used to separate oxygen from the air and change the traditional industrial oxygen making process. The ceramic membrane is coupled with the methane partial oxidation process to form a ceramic membrane. It can significantly reduce the production cost of synthetic gas and has great economic and environmental benefits. In order to realize commercial application, oxygen permeable membrane must have high oxygen permeability and sufficient stability under harsh conditions. In the early laboratory study, yttrium oxide stabilized zirconia Zr0.84Y0.16O1.92 (YS Z) the two phase mixed conductor material formed with (LSCrF) has good stability. The phase conversion method is used to prepare a ceramic membrane with a thin functional layer and a thick finger pore layer, which can significantly improve the oxygen permeation performance of the oxygen permeable membrane. In the first chapter, the oxygen permeation principle and application prospect of the ceramic oxygen permeable membrane were introduced, and the process of preparing asymmetric membrane by phase transformation was introduced, and the research status of the plate membrane was introduced. The second chapter studied the improved phase transformation of the YSZ-LSCrF asymmetric ceramic membrane. The ceramic permeable membrane prepared by the phase conversion method usually has a typical asymmetric structure, including dense functional layer, finger hole layer and low porosity skin layer covering the surface of the finger hole. In the case of low porosity, the resistance of the skin layer to gas is larger, so removing the skin layer is the increase of oxygen permeability. In this paper, the YSZ-LSCrF asymmetric flat membrane of the skin layer with graphite sacrificial layer is studied systematically. In the process of preparation, the upper layer is graphite slurry, the lower layer is YSZ-LSCrF ceramic paste, the double layer casting technology is used to prepare wet blank with water as flocculant. The air is dry. The prepared blank is three layers of structure: the relatively dense skin layer is graphite, the finger hole layer and the sponge layer are the ceramic powder of the oxygen permeable membrane. In the later sintering process, the graphite layer combustion is removed, the ceramic powder layer is retained, and the asymmetric ceramic permeable film is formed by the finger hole layer and 150 mu m thickness to the thickness. Due to the use of graphite sacrifice in the preparation process, the skin layer is completely removed and the finger hole is completely exposed, thus greatly improving the gas transport properties of the porous support layer. In order to compare, the asymmetric flat film containing the skin layer is prepared by the single-layer phase transformation method, and the two structures are made. The oxygen permeable membrane was tested and studied. During the test, the dense side of the oxygen permeable membrane was exposed in the air and the porous side was blown by 30ml/min He. The experimental results showed that the oxygen permeation rate of the skin layer samples was 1.08 x 10-8molcm-2s-1 at 850, and the skin layer samples were 2.57 x 10-9molcm-2s-1. without skin under the air/CO gradient. The oxygen permeation performance test of the skin layer samples shows that the oxygen permeation rate is up to 2.26 x 10-7molcm-2s-1. at 850. The results show that the improved phase conversion technique and the asymmetric oxygen permeable membrane prepared with the porous support with straight hole structure can significantly reduce the concentration polarization of the oxygen permeable film and increase the oxygen permeation of the oxygen permeable membrane. The improvement of permeability rate of oxygen permeable membrane is of great significance for promoting the industrial application of the ceramic oxygen permeable membrane. In the third chapter, the effect of surface modification on the oxygen permeation behavior of asymmetric flat film is studied. The asymmetric oxygen permeable membrane prepared by the improved phase transformation flow method has a thinner functional layer and good gas transport. The performance of the porous support, at this time the oxygen permeation process of the oxygen permeable membrane, will become surface oxygen exchange. Therefore, the surface modification of the membrane is studied to improve the oxygen exchange rate of the surface and to further improve the oxygen permeability of the asymmetric membrane of the straight hole structure. Three samples are prepared for the porous support of the straight hole structure. The YSZ-LSCrF asymmetric oxygen permeable membrane is used to prepare a homogeneous layer of YSZ-LSCrF porous layer on the compact side. When the finger hole is impregnated with SDC nanoparticles at.850 C, the oxygen permeation rate of the membrane only modified by the air/He gradient is 1.5 x 10-8molcm-2min-1; for the sample with only the compact side, the oxygen permeation rate is the same. 2.81 x 10-8molcm-2min-1, the oxygen permeation rate increased to 3.83 x 10-8molcm-2min-1 for the surface of the dense membrane and the pores in the porous support body, and the oxygen permeation rate increased to 50%, to 170% and to 270%., respectively, and the oxygen permeation of the three samples after the sweep gas He was switched to CO. At the air/CO gradient, the oxygen permeation rate reached 6.82 x 10-7mol cm-2 S-1 under the air/CO gradient, and the oxygen permeation rate increased under the gradient of 1 ml (STP) cm-2 min-1.air/CO, which was mainly attributable to the increase of the oxygen partial pressure gradient at the two side of the membrane. The experimental results also showed the test sample. The phase composition and microstructure of the.YSZ-LSCrF film have no changes in the air / reduction atmosphere. Therefore, the YSZ-LSCrF oxygen permeable membrane has a good application prospect in the membrane reactor. The fourth chapter studies the partial oxidation of methane based on the YSZ-LSCrF flat film (partial oxidation of metha). NE, POM) synthesis gas process. The YSZ-LSCrF asymmetric flat film is fixed on the stainless steel base with a glass ring sealing agent. The effective area of the film is 13 cm2, and the Ni/Al2O3 catalyst is filled under the membrane. Methane is converted to syngas through the two steps of oxidation reformer (oxidation/reforming). The oxidation reaction occurs on the surface of the membrane, CH4, H2, CO. In response to oxygen derived from the air, H2O, CO2 is generated, and the reformer is carried out on the catalytic bed. The H2O, CO2 reaction generated by CH4 and oxidation is converted to H2. When CH4 injection is 32ml/min at 800, the O2 ratio of CH4 to the osmosis is close to 2:1, and the conversion rate is up to 90%, and the oxygen permeation rate is also more than 95%. The 1.4 mlcm-2 min-1. oxygen permeable membrane and catalyst can maintain good stability under the reactor condition. The new process of synthesis gas based on POM of oxygen permeable membrane is expected to be applied. In the fifth chapter, a new process of CO production of synthetic gas and nitrogen based on ceramic oxygen permeable film is put forward and experimentally studied. The YSZ-LSCrF plate membrane is immobilized on the stainless steel base with a glass sealing agent. The effective area of the film is 6.8 cm2, and the Ni/Al2O3 catalyst is filled under the membrane. It is found that at 850, the air injection rate is 55ml/min, and the methane injection rate is 22ml/min, the methane is basically converted into synthetic gas. The production rate of gas is up to 10ml/min, the conversion rate of methane is 99%, the selectivity of hydrogen is 99%, the selectivity of carbon monoxide is more than 95%. At the same time, the nitrogen concentration in the nitrogen rich gas obtained at the air side is as high as 99.9%.. It is worth pointing out that the new process of syngas / nitrogen production based on oxygen permeable membrane has the characteristics of simple and efficient, and it is possible to be The application of synthetic ammonia and urea industry. The proportion of H2/CO in synthetic gas is close to 2, and it can also be used in F-T reaction to prepare liquid fuel. At this time nitrogen can be used to provide nitrogen source for other reactions. The sixth chapter studies the POM energy of the short pile (short stack) of asymmetric flat membrane reactor. The short pile is composed of two pieces of YSZ-LSCrF flat film, and the film is always available. The effect area is 16cm2, Ni/Al2O3 as catalyst is placed between two films. When 8000C, CH4 injection is 30ml/min (the other side of the membrane is exposed to ambient air), oxygen permeation rate is 1.25ml cm-2min-1, CH4 conversion rate reaches 76%, CO, H2 is larger than 75%. and monolithic membrane reactor, the POM performance of short reactor is slightly lower, mainly and short. The structural design of the reactor (such as the placement of the catalyst, the distribution of the reaction gas, etc.). The research on the short reactor reactor has verified the feasibility of the plate reactor reactor and provided an important basis for the development of the practical POM membrane reactor. The seventh chapters have made a summary of the work in this paper, and put forward some suggestions for the next step of research and development. The development and application of P O M membrane reactor technology are prospected.
【學(xué)位授予單位】:中國(guó)科學(xué)技術(shù)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:TQ116.1
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 佟建華,楊維慎;混合導(dǎo)體透氧膜的制備及其應(yīng)用[J];材料研究學(xué)報(bào);2001年01期
2 金萬(wàn)勤;徐南平;;混合導(dǎo)體透氧膜材料的設(shè)計(jì)與應(yīng)用[J];化工進(jìn)展;2006年10期
3 ;混合導(dǎo)體透氧膜實(shí)現(xiàn)低溫穩(wěn)定運(yùn)行[J];功能材料信息;2013年02期
4 周健兒,朱志剛,梁健,馬光華,顧幸勇;鈣鈦礦型混合導(dǎo)體透氧膜的研究[J];中國(guó)陶瓷工業(yè);2001年04期
5 廖傳華;無(wú)機(jī)透氧膜的發(fā)展與應(yīng)用[J];硅酸鹽通報(bào);2004年03期
6 朱雪峰;楊維慎;;混合導(dǎo)體透氧膜反應(yīng)器[J];催化學(xué)報(bào);2009年08期
7 邵宗平,熊國(guó)興,楊維慎;系統(tǒng)選擇鈣鈦礦型透氧膜材料[J];無(wú)機(jī)材料學(xué)報(bào);2001年02期
8 程云飛;趙海雷;王治峰;滕德強(qiáng);;鈣鈦礦型透氧膜材料的結(jié)構(gòu)特點(diǎn)與研究進(jìn)展[J];稀有金屬材料與工程;2008年12期
9 丁偉中;沈培俊;楊志彬;郭曙強(qiáng);張玉文;汪學(xué)廣;吳成章;魯雄剛;;焦?fàn)t煤氣在透氧膜反應(yīng)器中的重整機(jī)理[J];上海大學(xué)學(xué)報(bào)(自然科學(xué)版);2011年04期
10 蓋永乾;丁偉中;金容;孟星宇;吉福堂;王賀;;La摻雜對(duì)Ba_(1-x)La_xCo_(0.9)Nb_(0.1)O_(3-δ)透氧能力及穩(wěn)定性能的影響[J];功能材料;2014年05期
相關(guān)會(huì)議論文 前10條
1 王海輝;;新型混合導(dǎo)體透氧膜在催化反應(yīng)上的應(yīng)用[A];第四屆中國(guó)膜科學(xué)與技術(shù)報(bào)告會(huì)論文集[C];2010年
2 武潔花;張穎;張明森;;致密透氧膜的研究進(jìn)展[A];第六屆中國(guó)功能材料及其應(yīng)用學(xué)術(shù)會(huì)議論文集(7)[C];2007年
3 張華;陶順衍;金江;李祖鋼;楊南如;;一種新型的混合導(dǎo)電性透氧膜材料[A];第三屆中國(guó)功能材料及其應(yīng)用學(xué)術(shù)會(huì)議論文集[C];1998年
4 朱德春;李健林;汪波;陳初升;;致密陶瓷透氧膜反應(yīng)器研究[A];中國(guó)硅酸鹽學(xué)會(huì)2003年學(xué)術(shù)年會(huì)論文摘要集[C];2003年
5 金萬(wàn)勤;徐南平;;混合導(dǎo)體透氧膜材料的開(kāi)發(fā)及應(yīng)用[A];中國(guó)膜科學(xué)與技術(shù)報(bào)告會(huì)論文集[C];2003年
6 朱雪峰;叢鈾;楊維慎;;用于天然氣轉(zhuǎn)化與CO_2捕獲的雙相混合導(dǎo)體透氧膜[A];第十二屆固態(tài)化學(xué)與無(wú)機(jī)合成學(xué)術(shù)會(huì)議論文摘要集[C];2012年
7 董學(xué)良;何艷君;金萬(wàn)勤;徐南平;;SrCo_(0.4)Fe_(0.6-x)Al_xO_(3-δ)混合導(dǎo)體透氧膜材料的制備與表征[A];第三屆全國(guó)化學(xué)工程與生物化工年會(huì)論文摘要集(下)[C];2006年
8 楊麗;顧學(xué)紅;陳長(zhǎng)林;徐南平;時(shí)鈞;;SrCo_(0.4)Fe_(0.6)O_(3-δ)摻雜YSZ新型致密透氧膜的氧滲透性能和穩(wěn)定性研究[A];2000年材料科學(xué)與工程新進(jìn)展(上)——2000年中國(guó)材料研討會(huì)論文集[C];2000年
9 張鵬;韓敏芳;宋世棟;;Ba_(0.9)Co_(0.7)Fe_(0.2)Nb_(0.1)O_(3-δ)透氧膜性能及其應(yīng)用研究[A];中國(guó)硅酸鹽學(xué)會(huì)固態(tài)離子學(xué)分會(huì)理事會(huì)暨第一屆固態(tài)離子學(xué)青年學(xué)術(shù)交流會(huì)文集[C];2011年
10 顧學(xué)紅;楊麗;陳長(zhǎng)林;徐南平;時(shí)鈞;;SrCo_(0.4)Fe_(0.6)O_(3-δ)摻雜ZrO_2致密透氧膜的制備其在甲烷部分氧化制合成氣反應(yīng)的應(yīng)用研究[A];2000年材料科學(xué)與工程新進(jìn)展(上)——2000年中國(guó)材料研討會(huì)論文集[C];2000年
相關(guān)重要報(bào)紙文章 前1條
1 艾班;透氧膜反應(yīng)器提效甲烷芳構(gòu)化[N];中國(guó)化工報(bào);2014年
相關(guān)博士學(xué)位論文 前10條
1 廖慶;高透量、高穩(wěn)定性透氧膜材料及其透氧性能研究[D];華南理工大學(xué);2015年
2 袁榮華;高穩(wěn)定性YSZ-LSCrF非對(duì)稱平板氧分離膜和反應(yīng)器性能研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2016年
3 占閩川;高穩(wěn)定性陶瓷透氧膜及膜過(guò)程研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2008年
4 李澄;有支撐高通量致密鑭鎳系透氧膜的制備與表征[D];南京工業(yè)大學(xué);2005年
5 汪波;高溫致密透氧膜材料和膜過(guò)程研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2006年
6 田婷芳;陶瓷透氧膜材料和過(guò)程xO究[D];中國(guó)科學(xué)技術(shù)大學(xué);2011年
7 吳振濤;混合導(dǎo)體透氧膜材料的合成與性能研究[D];南京工業(yè)大學(xué);2006年
8 左艷波;致密陶瓷透氧膜和固體氧化物燃料電池電極材料研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2007年
9 楊麗;新型鋯基鈣鈦礦型致密透氧膜的研究[D];南京工業(yè)大學(xué);2003年
10 沈培俊;焦?fàn)t煤氣重整透氧膜研究及材料優(yōu)化[D];上海大學(xué);2011年
相關(guān)碩士學(xué)位論文 前10條
1 張星星;元素?fù)诫s對(duì)鈣鈦礦型透氧膜抗二氧化碳腐蝕性能的研究[D];上海大學(xué);2015年
2 李培培;鈣鈦礦型混合導(dǎo)體透氧膜材料的制備和性能研究[D];合肥工業(yè)大學(xué);2015年
3 王仲濤;無(wú)鈷陶瓷透氧膜的探索與穩(wěn)定性研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2014年
4 陳鑫智;新型摻雜鈣鈦礦型混合導(dǎo)體透氧膜材料的研究[D];華南理工大學(xué);2010年
5 宋紅章;YBa_2Cu_3O_(7-d)及元素替代材料的透氧性能研究[D];鄭州大學(xué);2005年
6 王玉;鈣鈦礦結(jié)構(gòu)混合導(dǎo)體透氧膜材料的制備及其性能研究[D];合肥工業(yè)大學(xué);2014年
7 黃祥賢;SrCo0.8Fe0.203-δ管狀非對(duì)稱透氧膜的制備與分離性能表征[D];安徽工業(yè)大學(xué);2008年
8 鄭琴;新型單相抗CO_2混合導(dǎo)體透氧膜的制備及其性能研究[D];華南理工大學(xué);2013年
9 吳日銘;LaCoO3系管狀透氧膜的制備和分離性能表征[D];安徽工業(yè)大學(xué);2009年
10 唐s,
本文編號(hào):1894683
本文鏈接:http://sikaile.net/kejilunwen/huaxuehuagong/1894683.html