PYN-PLZT陶瓷光學(xué)特性及溫度對其發(fā)光特性的影響
發(fā)布時間:2018-05-04 08:03
本文選題:PYN-PLZT陶瓷 + 溫度效應(yīng) ; 參考:《哈爾濱工業(yè)大學(xué)》2015年碩士論文
【摘要】:PYN-PLZT電光陶瓷材料由PYN與PLZT混合燒制而成,在保證材料透明度的情況下提高了Yb3+離子的濃度。高濃度的Yb3+離子使其在發(fā)光材料方面表現(xiàn)出較大潛力。Yb3+離子只存在兩個4f能級使得材料不會受到諸如濃度猝滅等情況的影響。同時Yb3+離子較長的能級壽命能夠極大的滿足高能激光器的需求,這也推動了近年來Yb3+離子增益介質(zhì)的發(fā)展。Yb3+離子的準三能級結(jié)構(gòu)使得材料的性能隨外界溫度的變化而變化。針對這一問題,本課題對PYN-PLZT陶瓷發(fā)光特性隨溫度的變化進行探究,目的為尋求不同溫度下合適工作波長的激光器和放大器提供指導(dǎo)作用,并為提高Yb3+離子摻雜材料性能提供方向。為了了解PYN-PLZT材料在開發(fā)多功能光源(激光器與光學(xué)放大器)的潛能,我們研究了材料相關(guān)的光學(xué)、電學(xué)、熱學(xué)與發(fā)光特性,也探討了溫度變化的相關(guān)影響。課題首先對材料的基本性能進行研究,完成了PYN-PLZT材料透射譜的測量,確定了材料的通光范圍和通光能力;隨后對材料的介電溫譜進行測量,得到材料的介電常數(shù)和居里溫度;最后測量了材料的二次電光系數(shù)及其隨溫度的變化,對材料的溫度穩(wěn)定性進行了分析。材料在所關(guān)注的波段通光良好,適于作為發(fā)光基質(zhì)材料。寬廣的介電溫譜使得相關(guān)的多功能電路溫度控制顯著放松。在較寬的溫度范圍內(nèi)的優(yōu)良的二次電光系數(shù)可以顯著降低控制電壓。在對PYN-PLZT陶瓷材料相關(guān)光譜的測試中,完成了對材料的拉曼光譜測量,了解了材料內(nèi)部晶格振動能級情況。這對認識該材料作為發(fā)光基質(zhì)的熱學(xué)特性至關(guān)重要。吸收譜的測量幫助我們確定合適的泵浦光波長。為了充分了解其作為發(fā)光材料的潛能,我們還利用擴展的J-O理論計算了材料的受激發(fā)射截面等相關(guān)發(fā)光參數(shù)隨溫度的變化,對材料發(fā)光特性隨溫度的變化進行了理論分析。為了認識該材料開發(fā)光源的適用波段與溫度特性,我們對材料發(fā)光光譜隨溫度的變化進行了測量,直接研究材料發(fā)光特性與材料溫度之間的關(guān)系,并利用系統(tǒng)能級理論計算了材料準三能級系統(tǒng)性能隨溫度的變化,與實驗結(jié)果相結(jié)合討論了材料發(fā)光特性隨溫度的變化及其原因。確定了開發(fā)光源的最佳波段,以及不同波段適合的工作溫度。
[Abstract]:The PYN-PLZT electrooptic ceramic material is made of PYN and PLZT, which increases the concentration of Yb3 ion under the condition of ensuring the transparency of the material. The high concentration of Yb3 ion makes it show great potential in luminescent material. Yb3 ion only has two 4f energy levels so that the material will not be affected by such conditions as concentration quenching. At the same time, the longer energy level lifetime of Yb3 ion can greatly meet the needs of high-energy lasers, which also promotes the development of Yb3 ion gain medium in recent years. The quasi-three-level structure of Yb3 ion makes the material performance change with the change of external temperature. To solve this problem, this paper explores the variation of luminescence characteristics of PYN-PLZT ceramics with temperature, in order to provide guidance for laser and amplifier with suitable operating wavelength at different temperatures. It also provides the direction for improving the properties of Yb3 ion doped materials. In order to understand the potential of PYN-PLZT materials in the development of multifunctional light sources (lasers and optical amplifiers), we have studied the optical, electrical, thermal and luminescent properties of materials, and discussed the effects of temperature changes. Firstly, the basic properties of the material are studied, the transmission spectrum of PYN-PLZT material is measured, and the range and ability of transmitting light are determined, then the dielectric constant and Curie temperature of the material are obtained by measuring the dielectric temperature spectrum of the material. Finally, the secondary electro-optic coefficient and its variation with temperature are measured, and the temperature stability of the material is analyzed. The material has a good light flux in the band concerned and is suitable as a luminous substrate. The wide dielectric temperature spectrum significantly relaxes the temperature control of the related multifunctional circuits. The high secondary electro-optic coefficient in a wide temperature range can significantly reduce the control voltage. In the measurement of the correlation spectra of PYN-PLZT ceramic materials, the Raman spectra of the materials were measured, and the vibrational energy levels of the lattice in the materials were investigated. This is important to understand the thermal properties of the material as a luminescent substrate. The measurement of absorption spectra helps us determine the appropriate pump wavelength. In order to fully understand its potential as a luminescent material, we also use the extended J-O theory to calculate the dependence of temperature on the luminescence parameters such as the excited emission cross section of the material, and analyze the luminescence characteristics of the material with temperature. In order to understand the suitable band and temperature characteristics of the light source developed by the material, we have measured the luminescence spectrum of the material with the change of temperature, and studied directly the relationship between the luminescence characteristic of the material and the temperature of the material. Based on the system energy level theory, the temperature dependence of material quasi-three-level system performance is calculated, and the variation of material luminescence characteristics with temperature and its reasons are discussed in combination with the experimental results. The optimum band of light source and the suitable operating temperature of different band are determined.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TQ174.1
【參考文獻】
相關(guān)期刊論文 前1條
1 劉東峰,陳國夫,王賢華,阮靈;摻Y(jié)b~(3+)光纖激光器及放大器[J];激光與紅外;1999年04期
,本文編號:1842243
本文鏈接:http://sikaile.net/kejilunwen/huaxuehuagong/1842243.html
最近更新
教材專著