寬光譜響應(yīng)染料敏化半導(dǎo)體的構(gòu)筑及其光催化產(chǎn)氫性能研究
發(fā)布時(shí)間:2018-04-29 00:40
本文選題:染料敏化半導(dǎo)體 + 光催化產(chǎn)氫; 參考:《武漢大學(xué)》2015年博士論文
【摘要】:構(gòu)建高效、穩(wěn)定及寬光譜響應(yīng)的光催化產(chǎn)氫體系是當(dāng)前新能源領(lǐng)域的挑戰(zhàn)性課題。因染料的分子結(jié)構(gòu)和吸光能力及范圍可調(diào)、種類多樣性等優(yōu)點(diǎn),染料敏化就成為提升寬隙半導(dǎo)體(如TiO2、g-C3N4等)的光譜響應(yīng)范圍及其光催化產(chǎn)氫性能的重要手段。但是傳統(tǒng)的配合物、有機(jī)染料和天然色素等大多僅能吸收400-600nm的可見光,而不能充分利用太陽光的紅光及紅外區(qū)。為此,本文開展了染料的分子結(jié)構(gòu)設(shè)計(jì)、共敏化以及可見/近紅外寬光譜響應(yīng)染料的探索,并深入探討了其敏化半導(dǎo)體的光催化產(chǎn)氫性能及相關(guān)機(jī)理。主要研究內(nèi)容和結(jié)論歸納如下:1.采用系列含/不含羧基的單/雙核釕聯(lián)吡啶類配合物敏化Ti02(P25)以提高可見光催化產(chǎn)氫能力。發(fā)現(xiàn)染料的分子結(jié)構(gòu)及其與TiO2之間的結(jié)合方式對其敏化性能具有重大的影響:1)光照下的雙核釕聯(lián)吡啶類染料因其“天線-敏化中心”結(jié)構(gòu)而具有的多途徑分子內(nèi)電荷轉(zhuǎn)移過程(MLCT, MMCT等),有利于提高體系的光吸收效率;2)通過羧基與Ti02鍵合的染料在加速光生電子注入的同時(shí),也利于光生電子的回傳(復(fù)合);而不含羧基的染料可通過O、N等與Ti02形成較弱的結(jié)合作用亦能形成光生電子的轉(zhuǎn)移通道,但在Ti02表面建立的染料“基態(tài)吸附-氧化態(tài)脫附的動(dòng)態(tài)平衡”可有效地抑制光生電子的回傳(復(fù)合)。因此,不含羧基的雙核釕聯(lián)吡啶類染料敏化Ti02具有最好的產(chǎn)氫效率和穩(wěn)定性,其在420nm單色光處的表觀量子效率(AQY)為16.8%,是含羧基的單、雙核釕聯(lián)吡啶類染料的10倍左右。這對染料的分子設(shè)計(jì)、能帶調(diào)控及其高效、穩(wěn)定和寬可見光響應(yīng)的敏化半導(dǎo)體產(chǎn)氫體系的構(gòu)筑等具有重要的指導(dǎo)意義。2.將具有電子“推-拉”效應(yīng)的非對稱鋅酞(萘)菁類配合物(Zn-tri-PcNc-1. Zn-tri-PcNc-2及Zn-tri-PcNc-3)敏化g-C3N4以提高其紅光/近紅外光響應(yīng)能力。結(jié)果表明:1)酞菁配合物敏化g-C3N4的光譜響應(yīng)范圍可拓展到600-800nm的紅光/近紅外區(qū);2)酞菁分子結(jié)構(gòu)的非對稱性、電子轉(zhuǎn)移方向性、推拉電子基團(tuán)等的共同作用是提升其敏化半導(dǎo)體的產(chǎn)氫性能的關(guān)鍵因素。由非對稱鋅酞(萘)菁敏化的g-C3N4在700 nm單色光處的AQY超過1.0%,遠(yuǎn)高于文獻(xiàn)報(bào)道值(MgPc660 nm處~0.07%1MnPc:670 nm處~0.06%),有望推動(dòng)太陽光中的紅光/近紅外光-氫能的轉(zhuǎn)化效率的突破。3.將脫氧鵝膽酸(CDCA)共吸附劑引入到上述Zn-tri-PcNc-1-Pt/g-C3N4體系,發(fā)現(xiàn)CDCA起到抑制酞菁的聚集和提升敏化體系的光生電子轉(zhuǎn)移效率的雙重作用。經(jīng)CDCA共吸附后,Zn-tri-PcNc-1-Pt/g-C3N4在λ≥500 nm光照下的產(chǎn)氫性能提升了50.5%,且在700 nm單色光處的A.QY提升到了1.85%,創(chuàng)造了酞菁類染料在敏化半導(dǎo)體產(chǎn)氫領(lǐng)域的新紀(jì)錄。為進(jìn)一步提升酞菁類染料對紅光/近紅外光的敏化產(chǎn)氫效率提供了新的思路。4.采用具有互補(bǔ)的光譜吸收能力的非對稱酞菁類染料(Zn-tri-PcNc-1)及D-π-A有機(jī)染料(LI-4)成功構(gòu)建了在400-800nm波段范圍內(nèi)具有光響應(yīng)能力的新型光催化材料。發(fā)現(xiàn)共敏化材料(LI-4/g-C3N4/Zn-tri-PcNc-1)在λ≥420 nm光照下的產(chǎn)氫活性幾乎為單一染料敏化體系(LI-4/g-C3N4和Zn-tri-PcNc-1/g-C3N4)活性的加和,且在420,500和700 nm單色光處的AQY分別高達(dá)16.3%,7.7%和1.75%。這為構(gòu)建高效、穩(wěn)定和寬光譜響應(yīng)的產(chǎn)氫體系提供了一條新途徑,有利于推動(dòng)光-氫轉(zhuǎn)換效能的突破和實(shí)際應(yīng)用。5.基于廉價(jià)、無污染的抗壞血酸(AA)在Ti02表面原位形成的表面LMCT配合物及非對稱酞菁類染料(Zn-tri-PcNc-1)構(gòu)建了在400-800 nm波段具有較高產(chǎn)氫活性的共敏化材料(Zn-tri-PcNc-1-TiO2-AA)。研究發(fā)現(xiàn):1)廉價(jià)、無污染的抗壞血酸可在TiO2表面原位、即時(shí)形成具有400-600 nm寬可見光響應(yīng)能力的表面電荷轉(zhuǎn)移配合物(AA-TiO2),其在λ≥420 nm光照下具有較好的產(chǎn)氫活性;2)共敏化材料Zn-tri-PcNc-1-TiO2-AA在λ≥420 nm光照下的產(chǎn)氫活性得到進(jìn)一步提升,且在400-800 nm波段范圍內(nèi)均具有較高的AQY值,尤其是在420和700 nm單色光處的AQY分別為16.9%和0.97%。本研究打破傳統(tǒng)DSSCs領(lǐng)域的共敏化模式,為進(jìn)一步提升寬帶隙半導(dǎo)體對可見光甚至近紅外光的響應(yīng)能力提供了全新的思路。6.將聚合物P3HT與g-C3N4復(fù)合構(gòu)建了在400-700nm波段范圍內(nèi)具有光響應(yīng)能力的P3HT/g-C3N4異質(zhì)結(jié)光催化材料。研究發(fā)現(xiàn):1)1犧牲試劑的種類及其參與的氧化半反應(yīng)對該異質(zhì)結(jié)材料的產(chǎn)氫性能具有重大的影響;2)以AA為犧牲試劑時(shí),P3HT/g-C3N4在420和500nm單色光處的AQY分別高達(dá)77.4%和59.4%,且在700和760 nm單色光處的AQY亦分別高達(dá)3.2和1.7%,為聚合物類材料產(chǎn)氫領(lǐng)域的新記錄。所構(gòu)建的聚合物/聚合物異質(zhì)結(jié)材料具有比一般染料更寬的可見/近紅外光響應(yīng)能力和更高的產(chǎn)氫活性,在提高可見/近紅外寬光譜響應(yīng)產(chǎn)氫效率和穩(wěn)定性方面具有極大的發(fā)展?jié)摿Α?br/>[Abstract]:The construction of photocatalytic hydrogen production system with high efficiency, stability and wide spectrum response is a challenging topic in the field of new energy. Because of its molecular structure, absorbability and range of absorbability and variety, the dye sensitization becomes the weight of the spectral response range of the wide gap semiconductor (such as TiO2, g-C3N4, etc.) and its photocatalytic hydrogen production performance. However, most of the traditional complexes, organic dyes and natural pigments can only absorb the visible light of 400-600nm, but can not make full use of the red and infrared light of the sun. Therefore, this paper has carried out the design of the molecular structure of the dye, the common sensitization and the exploration of the visible / near infrared broad spectrum response to the dye, and the sensitization half of the dye. The main research contents and conclusions are summarized as follows: 1. using a series of single / double nuclear ruthenium bipyridine complexes containing / without carboxyl group sensitized Ti02 (P25) to improve the capacity of hydrogen production in visible light. It is found that the molecular structure of the dye and the combination way with TiO2 are important for its sensitization. 1) 1) the multi-channel intramolecular charge transfer process (MLCT, MMCT, etc.) of the double nuclear ruthenium bipyridine dyes under the structure of the "antenna sensitization center" is beneficial to improving the optical absorption efficiency of the system. 2) the dye with the carboxyl and Ti02 bonds accelerates the photoelectron injection and is beneficial to the return of the photoelectron. The dye without carboxyl group can form a photoelectron transfer channel through weak binding between O, N and Ti02, but the dynamic equilibrium of the dye "base state adsorption oxidation state desorption" on the Ti02 surface can effectively inhibit the return of photoelectrons (compound). Therefore, the dyestuff of the non carboxyl biuclear ruthenium bipyridine The material sensitized Ti02 has the best hydrogen production efficiency and stability, and its apparent quantum efficiency (AQY) at 420nm monochromatic light is 16.8%, which is about 10 times of the monomer containing the carboxyl group and the double nuclear ruthenium bipyridine dye. It has important guiding significance for.2. to sensitize the asymmetric zinc phthalein (naphthalene) cyanine complexes (Zn-tri-PcNc-1. Zn-tri-PcNc-2 and Zn-tri-PcNc-3) with the electronic "push pull" effect to improve their red light / near infrared response ability. The results show that: 1) the spectral response range of the phthalocyanine complex sensitized g-C3N4 can be extended to the red light in 600-800nm. Near infrared region; 2) the non symmetry of the molecular structure of phthalocyanine, the direction of electron transfer and the interaction of the push and pull electronic groups are the key factors to improve the hydrogen production of the sensitized semiconductor. The AQY sensitized by asymmetric phthalide (naphthalocyanine) in the monochromatic light of 700 nm is over 1%, far higher than the reported value of the literature (MgPc660 nm to 0.07%1MnPc:6). 70 nm to 0.06%), it is expected to promote the transformation efficiency of the red / near infrared light and hydrogen energy in the solar light. The deoxy goose cholic acid (CDCA) Co adsorbent is introduced into the Zn-tri-PcNc-1-Pt/g-C3N4 system. It is found that CDCA plays a double role in inhibiting the aggregation of phthalocyanine and enhancing the photoelectron transfer efficiency of the sensitized system. By CDCA CO adsorption After that, the hydrogen production performance of Zn-tri-PcNc-1-Pt/g-C3N4 increased by 50.5% under the light of lambda 500 nm and increased to 1.85% at the 700 nm monochromatic light, creating a new record of the phthalocyanine dyes in the field of hydrogen production in sensitized semiconductors. It provides a new way of thinking for further upgrading the efficiency of the sensitized hydrogen production of the red / near infrared light by phthalocyanine dyes. Using asymmetric phthalocyanine dyes (Zn-tri-PcNc-1) and D- PI -A organic dyes (LI-4) with complementary spectral absorbability, a new photocatalytic material with light response ability in the range of 400-800nm band is successfully constructed. The hydrogen production activity of the co sensitized material (LI-4/g-C3N4/Zn-tri-PcNc-1) in the light of lambda 420 nm is almost single dye. The addition of the activity of the material sensitized system (LI-4/g-C3N4 and Zn-tri-PcNc-1/g-C3N4), and the AQY of 16.3%, 7.7% and 1.75%. at the 420500 and 700 nm monochromatic light respectively, provides a new way for the construction of hydrogen production system with high efficiency, stability and wide spectrum response. It is beneficial to promote the breakthrough of the efficiency of light hydrogen conversion and the actual application of.5. based on the cheap, and no The surface LMCT complexes and asymmetric phthalocyanine dyes (Zn-tri-PcNc-1) formed on the surface of the contaminated Ti02 (AA) have constructed a co sensitized material (Zn-tri-PcNc-1-TiO2-AA) with high hydrogen production activity in the 400-800 nm band. The study found that 1) is cheap, and the unstained ascorbic acid can be in situ on the TiO2 surface, with 40 in situ formation. 0-600 nm wide visible light response surface charge transfer complex (AA-TiO2) has better hydrogen production activity under the light of lambda > 420 nm; 2) the hydrogen production activity of the co sensitized material Zn-tri-PcNc-1-TiO2-AA under the light of lambda > 420 nm is further enhanced, and has a higher AQY value in the range of 400-800 nm wave segments, especially in 420. The AQY of 700 nm monochromatic light is 16.9% and 0.97%. respectively. This study breaks the common sensitization mode in the traditional DSSCs field, which provides a new idea to further enhance the response ability of broadband gap semiconductors to visible and near infrared light..6. combines the polymer P3HT with g-C3N4 to build the photoresponse within the 400-700nm band range. P3HT/g-C3N4 heterojunction photocatalytic materials. The study found: 1) the types of the 1 sacrificial reagents and their participation in the oxidation semi reaction have a significant effect on the hydrogen production of the heterojunction material; 2) when AA is sacrificed, the AQY of P3HT/g-C3N4 at 420 and 500nm monochromatic light is as high as 77.4% and 59.4% respectively, and AQY in the monochromatic light of 700 and 760 nm, respectively. It is also up to 3.2 and 1.7% respectively. It is a new record in the field of hydrogen production in polymer materials. The polymer / polymer heterojunction material has a wider visible / near infrared response ability and higher hydrogen production activity than the general dye. It has a great potential for improving the efficiency and stability of hydrogen production in the visible / near infrared wide spectrum response. Power.
【學(xué)位授予單位】:武漢大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2015
【分類號】:TQ116.2
,
本文編號:1817639
本文鏈接:http://sikaile.net/kejilunwen/huaxuehuagong/1817639.html
最近更新
教材專著