基于Petri網(wǎng)的離心式壓縮機(jī)故障診斷研究
本文選題:故障診斷 + 離心式壓縮機(jī); 參考:《西南石油大學(xué)》2017年碩士論文
【摘要】:離心式壓縮機(jī)是石油化工企業(yè)的關(guān)鍵設(shè)備,具有流向大,轉(zhuǎn)速高,占地面積小等優(yōu)點(diǎn),承擔(dān)著為整套設(shè)備和循環(huán)介質(zhì)提供循環(huán)動(dòng)力的任務(wù)。若離心壓縮機(jī)產(chǎn)生故障,極其容易形成巨大的安全事故,給當(dāng)事企業(yè)造成巨大危害。因此,如何在離心式壓縮機(jī)出現(xiàn)故障征兆時(shí)盡可能快地采取措施規(guī)避故障事故的發(fā)生;如何在設(shè)備故障后快速找出原因并加以排除,將離心式壓縮機(jī)故障事故降低到最低限度就成為了一個(gè)非常重要的研究課題。本文采用基于Petri網(wǎng)的故障診斷技術(shù)對(duì)離心式壓縮機(jī)故障系統(tǒng)進(jìn)行狀態(tài)分析故障診斷。首先對(duì)基本Petri網(wǎng)的基礎(chǔ)性知識(shí)和根本性規(guī)則進(jìn)行定義和分析,接著再建立作用于故障信息傳播演變推導(dǎo)分析的離心式壓縮機(jī)故障Petri網(wǎng)系統(tǒng)模型,對(duì)離心式壓縮機(jī)系統(tǒng)故障進(jìn)行系統(tǒng)性推理分析,并利用模型的關(guān)聯(lián)矩陣及其狀態(tài)方程式分析法對(duì)故障信息的傳播路徑進(jìn)行模擬論證。可是故障Petri網(wǎng)為具備模糊性以及不確定性的故障源進(jìn)行反向診斷推導(dǎo)時(shí)具有嚴(yán)重缺陷,導(dǎo)致推導(dǎo)過(guò)程難以為繼,對(duì)故障Petri網(wǎng)進(jìn)行改進(jìn),使之能夠符合故障診斷需要。為克服故障Petri網(wǎng)在推理分析復(fù)雜、不確定的故障信息中的不足,首先引入置信度最大及深度搜索優(yōu)先的診斷辦法,同時(shí)綜合Petri網(wǎng)和模糊推導(dǎo)知識(shí),形成并進(jìn)一步定義出模糊Petri網(wǎng)診斷推理方法及其概念與規(guī)則表示,依照其反向診斷推理算法并基于已形成的故障來(lái)研判分析出故障源,同時(shí)分析羅列出該診斷推理方法的流程步驟,同時(shí)結(jié)合正向推理分析算法,通過(guò)邏輯推理和系統(tǒng)狀態(tài)推理運(yùn)算對(duì)離心式壓縮機(jī)故障系統(tǒng)進(jìn)行推導(dǎo)分析。經(jīng)過(guò)對(duì)離心式壓縮機(jī)系統(tǒng)進(jìn)行正向推導(dǎo)分析及其反向診斷推導(dǎo),得出了一致的結(jié)論,研判出系統(tǒng)中的故障源以及它們引發(fā)故障的可信度,由此論證了算法的有效性、可行性和準(zhǔn)確性,進(jìn)一步提升了故障診斷的準(zhǔn)確性和高效性,為工作人員對(duì)離心式壓縮機(jī)設(shè)備系統(tǒng)進(jìn)行日常維護(hù)和故障診斷提供了一種新辦法、新思路。
[Abstract]:Centrifugal compressor is the key equipment in petrochemical enterprises, which has the advantages of large flow direction, high speed, small area, and so on. It undertakes the task of providing circulating power for the whole equipment and circulation medium. If centrifugal compressor failure, it is easy to form a huge safety accident, causing great harm to the enterprise concerned. Therefore, how to take measures to avoid fault accidents as soon as possible, how to find out the cause quickly after the equipment failure and how to eliminate it. Reducing the fault of centrifugal compressor to the minimum has become a very important research topic. In this paper, fault diagnosis technology based on Petri net is used for fault diagnosis of centrifugal compressor fault system. Firstly, the basic knowledge and fundamental rules of basic Petri net are defined and analyzed, then the fault Petri net system model of centrifugal compressor is established, which is used to deduce and analyze the evolution of fault information. The fault of centrifugal compressor system is analyzed by systematic reasoning, and the propagation path of fault information is simulated by using the correlation matrix of the model and the analysis of the state equation. However, fault Petri nets have serious defects in the reverse diagnosis derivation for fault sources with fuzziness and uncertainty, which makes the derivation process difficult to continue. The fault Petri nets are improved to meet the needs of fault diagnosis. In order to overcome the shortcomings of fault Petri nets in reasoning and analysis of complex and uncertain fault information, a diagnosis method of maximum confidence and depth search priority is introduced, and Petri nets and fuzzy derivation knowledge are synthesized at the same time. The fuzzy Petri net diagnosis reasoning method and its concept and rule representation are formed and further defined. According to its reverse diagnosis reasoning algorithm and based on the fault that has been formed, the fault source is analyzed and analyzed. At the same time, the process steps of the diagnostic reasoning method are listed, and the fault system of centrifugal compressor is deduced and analyzed by logical reasoning and system state reasoning combined with forward reasoning analysis algorithm. After the forward derivation and reverse diagnosis of the centrifugal compressor system, a consistent conclusion is drawn, and the fault source and the reliability of the fault caused by the fault are studied, and the validity of the algorithm is demonstrated. The feasibility and accuracy improve the accuracy and efficiency of fault diagnosis, and provide a new method and new idea for the routine maintenance and fault diagnosis of centrifugal compressor equipment system.
【學(xué)位授予單位】:西南石油大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TQ051.21;TP301.1
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 干夢(mèng)迪;王壽光;周孟初;李俊;李月;;無(wú)界Petri網(wǎng)的可達(dá)樹(shù)的綜述[J];自動(dòng)化學(xué)報(bào);2015年04期
2 公茂法;張言攀;柳巖妮;王志文;劉麗娟;;基于BP網(wǎng)絡(luò)算法優(yōu)化模糊Petri網(wǎng)的電力變壓器故障診斷[J];電力系統(tǒng)保護(hù)與控制;2015年03期
3 盛晟;肖明清;趙亮亮;文瑩;胡斌;;故障Petri網(wǎng)的概率變遷方法研究[J];儀器儀表學(xué)報(bào);2014年03期
4 方歡;方賢文;李德權(quán);;基于Petri網(wǎng)的故障診斷研究理論的綜述[J];計(jì)算機(jī)科學(xué);2014年03期
5 曾慶田;魯法明;劉聰;孟德存;;基于Petri網(wǎng)的跨組織應(yīng)急聯(lián)動(dòng)處置系統(tǒng)建模與分析[J];計(jì)算機(jī)學(xué)報(bào);2013年11期
6 彭俏;余刃;;模糊Petri網(wǎng)專(zhuān)家系統(tǒng)及其在核動(dòng)力裝置故障診斷中的應(yīng)用[J];核動(dòng)力工程;2013年S1期
7 黃敏;林嘯;侯志文;;模糊故障Petri網(wǎng)建模方法及其應(yīng)用[J];中南大學(xué)學(xué)報(bào)(自然科學(xué)版);2013年01期
8 孫曉玲;王寧;梁艷;;應(yīng)用帶標(biāo)識(shí)的模糊Petri網(wǎng)的模糊推理[J];計(jì)算機(jī)工程與科學(xué);2012年03期
9 潘興隆;賀國(guó);王三龍;;模糊Petri網(wǎng)在故障診斷知識(shí)表示和推理中的應(yīng)用[J];海軍工程大學(xué)學(xué)報(bào);2012年01期
10 劉心;印桂生;張磊;;一種面向?qū)ο竽:齈etri網(wǎng)建模方法的研究[J];計(jì)算機(jī)應(yīng)用研究;2009年11期
相關(guān)碩士學(xué)位論文 前8條
1 桂博翔;基于蟻群算法的離心式壓縮機(jī)智能故障診斷方法研究[D];西安石油大學(xué);2015年
2 曹建華;長(zhǎng)輸管道壓氣站天然氣離心壓縮機(jī)的振動(dòng)監(jiān)測(cè)與故障診斷[D];中國(guó)石油大學(xué)(華東);2014年
3 劉潤(rùn);離心壓縮機(jī)推力軸承多場(chǎng)耦合動(dòng)力學(xué)研究[D];北京化工大學(xué);2013年
4 尹海;離心式壓縮機(jī)軸心軌跡自動(dòng)識(shí)別及其故障診斷系統(tǒng)[D];浙江大學(xué);2013年
5 丁海斌;離心壓縮機(jī)狀態(tài)監(jiān)測(cè)與故障診斷系統(tǒng)設(shè)計(jì)與應(yīng)用[D];華東理工大學(xué);2011年
6 張才炎;基于petri網(wǎng)的機(jī)車(chē)故障診斷方法研究[D];中南大學(xué);2010年
7 李俊山;天然氣壓縮機(jī)可靠性分析[D];西南石油學(xué)院;2005年
8 譚旭;模糊Petri網(wǎng)在網(wǎng)絡(luò)故障診斷中的應(yīng)用研究[D];長(zhǎng)沙理工大學(xué);2005年
,本文編號(hào):1800045
本文鏈接:http://sikaile.net/kejilunwen/huaxuehuagong/1800045.html