基于Petri網(wǎng)的離心式壓縮機故障診斷研究
本文選題:故障診斷 + 離心式壓縮機 ; 參考:《西南石油大學》2017年碩士論文
【摘要】:離心式壓縮機是石油化工企業(yè)的關鍵設備,具有流向大,轉速高,占地面積小等優(yōu)點,承擔著為整套設備和循環(huán)介質(zhì)提供循環(huán)動力的任務。若離心壓縮機產(chǎn)生故障,極其容易形成巨大的安全事故,給當事企業(yè)造成巨大危害。因此,如何在離心式壓縮機出現(xiàn)故障征兆時盡可能快地采取措施規(guī)避故障事故的發(fā)生;如何在設備故障后快速找出原因并加以排除,將離心式壓縮機故障事故降低到最低限度就成為了一個非常重要的研究課題。本文采用基于Petri網(wǎng)的故障診斷技術對離心式壓縮機故障系統(tǒng)進行狀態(tài)分析故障診斷。首先對基本Petri網(wǎng)的基礎性知識和根本性規(guī)則進行定義和分析,接著再建立作用于故障信息傳播演變推導分析的離心式壓縮機故障Petri網(wǎng)系統(tǒng)模型,對離心式壓縮機系統(tǒng)故障進行系統(tǒng)性推理分析,并利用模型的關聯(lián)矩陣及其狀態(tài)方程式分析法對故障信息的傳播路徑進行模擬論證?墒枪收螾etri網(wǎng)為具備模糊性以及不確定性的故障源進行反向診斷推導時具有嚴重缺陷,導致推導過程難以為繼,對故障Petri網(wǎng)進行改進,使之能夠符合故障診斷需要。為克服故障Petri網(wǎng)在推理分析復雜、不確定的故障信息中的不足,首先引入置信度最大及深度搜索優(yōu)先的診斷辦法,同時綜合Petri網(wǎng)和模糊推導知識,形成并進一步定義出模糊Petri網(wǎng)診斷推理方法及其概念與規(guī)則表示,依照其反向診斷推理算法并基于已形成的故障來研判分析出故障源,同時分析羅列出該診斷推理方法的流程步驟,同時結合正向推理分析算法,通過邏輯推理和系統(tǒng)狀態(tài)推理運算對離心式壓縮機故障系統(tǒng)進行推導分析。經(jīng)過對離心式壓縮機系統(tǒng)進行正向推導分析及其反向診斷推導,得出了一致的結論,研判出系統(tǒng)中的故障源以及它們引發(fā)故障的可信度,由此論證了算法的有效性、可行性和準確性,進一步提升了故障診斷的準確性和高效性,為工作人員對離心式壓縮機設備系統(tǒng)進行日常維護和故障診斷提供了一種新辦法、新思路。
[Abstract]:Centrifugal compressor is the key equipment in petrochemical enterprises, which has the advantages of large flow direction, high speed, small area, and so on. It undertakes the task of providing circulating power for the whole equipment and circulation medium. If centrifugal compressor failure, it is easy to form a huge safety accident, causing great harm to the enterprise concerned. Therefore, how to take measures to avoid fault accidents as soon as possible, how to find out the cause quickly after the equipment failure and how to eliminate it. Reducing the fault of centrifugal compressor to the minimum has become a very important research topic. In this paper, fault diagnosis technology based on Petri net is used for fault diagnosis of centrifugal compressor fault system. Firstly, the basic knowledge and fundamental rules of basic Petri net are defined and analyzed, then the fault Petri net system model of centrifugal compressor is established, which is used to deduce and analyze the evolution of fault information. The fault of centrifugal compressor system is analyzed by systematic reasoning, and the propagation path of fault information is simulated by using the correlation matrix of the model and the analysis of the state equation. However, fault Petri nets have serious defects in the reverse diagnosis derivation for fault sources with fuzziness and uncertainty, which makes the derivation process difficult to continue. The fault Petri nets are improved to meet the needs of fault diagnosis. In order to overcome the shortcomings of fault Petri nets in reasoning and analysis of complex and uncertain fault information, a diagnosis method of maximum confidence and depth search priority is introduced, and Petri nets and fuzzy derivation knowledge are synthesized at the same time. The fuzzy Petri net diagnosis reasoning method and its concept and rule representation are formed and further defined. According to its reverse diagnosis reasoning algorithm and based on the fault that has been formed, the fault source is analyzed and analyzed. At the same time, the process steps of the diagnostic reasoning method are listed, and the fault system of centrifugal compressor is deduced and analyzed by logical reasoning and system state reasoning combined with forward reasoning analysis algorithm. After the forward derivation and reverse diagnosis of the centrifugal compressor system, a consistent conclusion is drawn, and the fault source and the reliability of the fault caused by the fault are studied, and the validity of the algorithm is demonstrated. The feasibility and accuracy improve the accuracy and efficiency of fault diagnosis, and provide a new method and new idea for the routine maintenance and fault diagnosis of centrifugal compressor equipment system.
【學位授予單位】:西南石油大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TQ051.21;TP301.1
【參考文獻】
相關期刊論文 前10條
1 干夢迪;王壽光;周孟初;李俊;李月;;無界Petri網(wǎng)的可達樹的綜述[J];自動化學報;2015年04期
2 公茂法;張言攀;柳巖妮;王志文;劉麗娟;;基于BP網(wǎng)絡算法優(yōu)化模糊Petri網(wǎng)的電力變壓器故障診斷[J];電力系統(tǒng)保護與控制;2015年03期
3 盛晟;肖明清;趙亮亮;文瑩;胡斌;;故障Petri網(wǎng)的概率變遷方法研究[J];儀器儀表學報;2014年03期
4 方歡;方賢文;李德權;;基于Petri網(wǎng)的故障診斷研究理論的綜述[J];計算機科學;2014年03期
5 曾慶田;魯法明;劉聰;孟德存;;基于Petri網(wǎng)的跨組織應急聯(lián)動處置系統(tǒng)建模與分析[J];計算機學報;2013年11期
6 彭俏;余刃;;模糊Petri網(wǎng)專家系統(tǒng)及其在核動力裝置故障診斷中的應用[J];核動力工程;2013年S1期
7 黃敏;林嘯;侯志文;;模糊故障Petri網(wǎng)建模方法及其應用[J];中南大學學報(自然科學版);2013年01期
8 孫曉玲;王寧;梁艷;;應用帶標識的模糊Petri網(wǎng)的模糊推理[J];計算機工程與科學;2012年03期
9 潘興隆;賀國;王三龍;;模糊Petri網(wǎng)在故障診斷知識表示和推理中的應用[J];海軍工程大學學報;2012年01期
10 劉心;印桂生;張磊;;一種面向?qū)ο竽:齈etri網(wǎng)建模方法的研究[J];計算機應用研究;2009年11期
相關碩士學位論文 前8條
1 桂博翔;基于蟻群算法的離心式壓縮機智能故障診斷方法研究[D];西安石油大學;2015年
2 曹建華;長輸管道壓氣站天然氣離心壓縮機的振動監(jiān)測與故障診斷[D];中國石油大學(華東);2014年
3 劉潤;離心壓縮機推力軸承多場耦合動力學研究[D];北京化工大學;2013年
4 尹海;離心式壓縮機軸心軌跡自動識別及其故障診斷系統(tǒng)[D];浙江大學;2013年
5 丁海斌;離心壓縮機狀態(tài)監(jiān)測與故障診斷系統(tǒng)設計與應用[D];華東理工大學;2011年
6 張才炎;基于petri網(wǎng)的機車故障診斷方法研究[D];中南大學;2010年
7 李俊山;天然氣壓縮機可靠性分析[D];西南石油學院;2005年
8 譚旭;模糊Petri網(wǎng)在網(wǎng)絡故障診斷中的應用研究[D];長沙理工大學;2005年
,本文編號:1800045
本文鏈接:http://sikaile.net/kejilunwen/huaxuehuagong/1800045.html