微生物燃料電池共代謝降解氰化物及產(chǎn)電性能研究
發(fā)布時(shí)間:2018-04-05 11:12
本文選題:微生物燃料電池 切入點(diǎn):氰化物 出處:《北京科技大學(xué)》2015年博士論文
【摘要】:廢水中低濃度氰化物的物化處理存在成本高,出水不達(dá)標(biāo),易造成二次污染等問(wèn)題,微生物共代謝降解低濃度氰化物是目前研究的主要方向。微生物燃料電池(Microbial fuel cell, MFC)是一種新興的廢水處理同步能源回收技術(shù),具有清潔高效,可實(shí)現(xiàn)能源回收以及污泥少等優(yōu)點(diǎn)。本研究利用微生物燃料電池來(lái)對(duì)廢水中的氰化物進(jìn)行共代謝降解并產(chǎn)電,針對(duì)氰化物的毒性抑制生物降解和產(chǎn)電,從產(chǎn)電菌的馴化富集以及陽(yáng)極材料的優(yōu)化兩個(gè)方面來(lái)提高M(jìn)FC的降氰產(chǎn)電性能,并研究了運(yùn)行參數(shù)對(duì)MFC降氰產(chǎn)電性能的影響。 采用梯度馴化和稀釋分離法獲得了具有降氰功能的產(chǎn)電菌液,該菌液可降解濃度為50mg/L的氰化物,電阻為510Ω2時(shí),MFC的最高輸出電壓為438mV,5.37W/m3,庫(kù)倫效率為36.8%,氰化物的去除率可達(dá)99.82%。對(duì)該菌液中的菌進(jìn)行了篩選分離,篩選出了10株具有降氰產(chǎn)電功能的菌株,這些菌株與富集的產(chǎn)電菌液相比,二者的降氰性能相當(dāng),但單菌株的產(chǎn)電效果較差。 為了能夠達(dá)到更好的產(chǎn)電效果和降氰效果,將電子介體固定在電極上,制備了一種PCF/PPY/CNTs/AQDS復(fù)合電極。復(fù)合電極作為MFC的陽(yáng)極,MFC的啟動(dòng)時(shí)間(196h),縮短1/3;功率密度(9.27W/m3)提高近1倍。復(fù)合電極能夠強(qiáng)化電子的傳遞效率,增強(qiáng)廢水中氰化物的降解速率和電極表面的生物多樣性。 陽(yáng)極電極表面的微生物多樣性要遠(yuǎn)高于陽(yáng)極懸浮液,氰化物馴化后陽(yáng)極生物多樣性減少,而復(fù)合陽(yáng)極可提高陽(yáng)極生物膜的群落多樣性,其中變形菌綱占據(jù)著陽(yáng)極生物膜的主要生態(tài)位。 陽(yáng)極液pH為8.2,醋酸鈉濃度為1.0g/L,氰化物的濃度為80mg/L,外阻為510Ω時(shí),MFC的功率密度可達(dá)10.86W/m3,氰化物的去除率在35h內(nèi)可達(dá)99.98%以上。微生物燃料電池中氰化物的降解遵循表觀一級(jí)反應(yīng)動(dòng)力學(xué)。建立了Andrews抑制動(dòng)力學(xué)模型,得到氰化物的最大比降解速率(Vm)為4.21h-1,飽和系數(shù)(KS)為42.02mg/L,抑制系數(shù)(Ki)為114.42mg/L。上述結(jié)果表明利用微生物燃料電池共代謝降解低濃度的氰化物同時(shí)產(chǎn)電可行的,經(jīng)處理后的氰化物達(dá)到了污水一級(jí)排放標(biāo)準(zhǔn),為將來(lái)微生物燃料電池技術(shù)用于實(shí)際含氰廢水的處理提供了理論基礎(chǔ)。
[Abstract]:The physicochemical treatment of low concentration cyanide in wastewater has many problems such as high cost, substandard effluent, easy to cause secondary pollution and so on. The main research direction is to decompose low concentration cyanide by microorganism co-metabolism.Microbial fuel cell (MFCs) is a new synchronous energy recovery technology for wastewater treatment. It has the advantages of clean and high efficiency, energy recovery and less sludge.In this study, microbial fuel cells were used to degrade cyanide in wastewater and produce electricity. The toxicity of cyanide inhibited biodegradation and electricity production.The cyanide-reducing electrical properties of MFC were improved from the aspects of acclimation and enrichment of electrogen-producing bacteria and optimization of anode materials. The effects of operation parameters on the electrical properties of MFC were studied.By gradient acclimation and dilution separation, the electrogen-producing liquid with the function of reducing cyanide was obtained. The cyanide with degradable concentration of 50mg/L was obtained. The maximum output voltage of the solution was 438mV ~ (5.37) W / m ~ (3), the efficiency of Coulomb was 36.8%, and the removal rate of cyanide could reach 99.82%.By screening and isolating the bacteria in the liquid, 10 strains with the function of reducing cyanide and producing electricity were screened out. Compared with the enriched electrogen-producing liquid, the two strains had the same performance of reducing cyanide, but the effect of single strain was worse than that of the single strain.In order to achieve better electricity generation and cyanide reduction effect, an PCF/PPY/CNTs/AQDS composite electrode was prepared by immobilization of electronic medium on the electrode.The starting time of the composite electrode used as the anode of MFC was reduced by 1 / 3, and the power density was increased by nearly twice as much as 9.27 W / m ~ (3).The composite electrode can enhance the efficiency of electron transfer, enhance the degradation rate of cyanide in wastewater and the biodiversity of electrode surface.The microbial diversity on the anode electrode surface was much higher than that on the anode suspension. After acclimation of cyanide, the biological diversity of the anode was decreased, while the community diversity of the anode biofilm was improved by composite anode.Proteus occupies the main niche of anode biofilm.When the pH value of anode solution is 8.2, sodium acetate concentration is 1.0 g / L, cyanide concentration is 80 mg / L, the power density of MFC is 10.86 W / m ~ 3 and the removal rate of cyanide is over 99.98% within 35 hours when the external resistance is 510 惟.The degradation of cyanide in microbial fuel cells follows the first order reaction kinetics.The kinetic model of Andrews inhibition was established. The maximum specific degradation rate of cyanide was 4.21h-1, the saturation coefficient was 42.02 mg / L, and the inhibition coefficient was 114.42 mg / L.The results show that it is feasible to decompose low concentration of cyanide by co-metabolism of microbial fuel cell and produce electricity simultaneously, and the treated cyanide can reach the first class discharge standard of sewage.It provides a theoretical basis for the application of microbial fuel cell technology to the treatment of cyanide-containing wastewater in the future.
【學(xué)位授予單位】:北京科技大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類號(hào)】:X703.1;TM911.45
【參考文獻(xiàn)】
相關(guān)期刊論文 前2條
1 李浩然;馮雅麗;周良;祝學(xué)遠(yuǎn);杜竹瑋;;微生物異化還原金屬氧化物的機(jī)理及應(yīng)用[J];中國(guó)礦業(yè)大學(xué)學(xué)報(bào);2007年05期
2 向音波;楊永剛;孫國(guó)萍;許玫英;;微生物燃料電池對(duì)污染物的強(qiáng)化降解及其機(jī)理綜述[J];微生物學(xué)通報(bào);2014年02期
,本文編號(hào):1714511
本文鏈接:http://sikaile.net/kejilunwen/huaxuehuagong/1714511.html
最近更新
教材專著