天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 化學(xué)工程論文 >

質(zhì)子交換膜傳遞通道理性構(gòu)筑及其微環(huán)境調(diào)控研究

發(fā)布時間:2018-03-25 02:40

  本文選題:質(zhì)子交換膜 切入點:通道 出處:《天津大學(xué)》2016年博士論文


【摘要】:質(zhì)子交換膜燃料電池(PEMFC)作為一種新型發(fā)電裝置,具有高效率、零污染等特點,在能源領(lǐng)域發(fā)揮著重要作用。質(zhì)子交換膜(PEM)是其“心臟”,決定電池功率。開發(fā)高傳遞性能PEM是實現(xiàn)PEMFC大規(guī)模應(yīng)用的關(guān)鍵挑戰(zhàn)。為此,必須從分子尺度到微納米尺度揭示膜通道與傳遞特性之間的關(guān)聯(lián),為膜結(jié)構(gòu)設(shè)計奠定基礎(chǔ)。本研究以PEM的傳遞性能優(yōu)化為主要目標(biāo),圍繞膜材料定向設(shè)計-膜通道理性構(gòu)筑-膜微環(huán)境協(xié)同調(diào)控-膜傳遞特性優(yōu)化這一鏈條,融合仿生和雜化思想,揭示了微環(huán)境與傳遞特性之間關(guān)聯(lián),實現(xiàn)了傳遞特性的顯著優(yōu)化,以期為高性能PEM的規(guī)模化制備提供理論指導(dǎo)和技術(shù)支持。主要研究成果如下:膜化學(xué)微環(huán)境調(diào)控與質(zhì)子傳遞過程強(qiáng)化。受植物保水機(jī)理啟發(fā),制備了親疏水性可調(diào)變的羧酸微囊(PMCs),將其與磺化聚醚醚酮共混制備雜化膜。研究發(fā)現(xiàn):PMCs在膜中發(fā)揮著“蓄水池”的作用,優(yōu)化了傳遞通道的水環(huán)境(化學(xué)微環(huán)境),從而使膜在低濕度下的傳導(dǎo)率增加13倍。制備了兩性離子微囊(ZMCs),將其與Nafion共混制備雜化膜。研究發(fā)現(xiàn):ZMCs能同時優(yōu)化膜通道水環(huán)境和質(zhì)子載體(化學(xué)微環(huán)境),強(qiáng)化了雜化膜在低濕度下的質(zhì)子傳導(dǎo)(提升21倍)。膜物理、化學(xué)微環(huán)境協(xié)同調(diào)控與質(zhì)子傳遞過程強(qiáng)化。制備高分子功能化碳納米管(FCNTs),將其與Nafion共混制備雜化膜。研究發(fā)現(xiàn):FCNTs協(xié)同優(yōu)化了膜通道物理、化學(xué)微環(huán)境,實現(xiàn)了質(zhì)子傳導(dǎo)的高效強(qiáng)化(提升5倍);在物理微環(huán)境方面,FCNTs在膜內(nèi)構(gòu)筑了高度連續(xù)的質(zhì)子傳遞通道;在化學(xué)微環(huán)境方面,FCNTs含有高密度的離子基團(tuán)。通過直接組裝膦酸化氧化石墨烯納米片(PGO),在PGO膜中構(gòu)筑了貫穿型通道,克服了兩親性高分子膜在構(gòu)筑通道方面的局限。在物理微環(huán)境方面,規(guī)則排列的GO納米構(gòu)筑了貫通于膜的超級連續(xù)通道;在化學(xué)微環(huán)境方面,膦酸基團(tuán)能夠獨立形成動態(tài)氫鍵網(wǎng)絡(luò)。膜物理、化學(xué)微環(huán)境協(xié)同調(diào)控與質(zhì)子/甲醇傳遞特性優(yōu)化。通過在Nafion膜表面組裝超薄的氧化石墨烯(GO)膜,制備了復(fù)合膜。研究發(fā)現(xiàn):由于對膜表層GO膜中傳遞通道的物理、化學(xué)微環(huán)境的協(xié)同優(yōu)化,實現(xiàn)了質(zhì)子傳導(dǎo)率與阻醇性能同步提升。膜物理、化學(xué)微環(huán)境協(xié)同調(diào)控與質(zhì)子傳遞和機(jī)械性能同步優(yōu)化。通過組裝二維無機(jī)材料與高分子SPVA,首次制備了仿珍珠層結(jié)構(gòu)的PEM。研究發(fā)現(xiàn):由于二維材料與高分子之間的協(xié)同作用,膜表現(xiàn)出超強(qiáng)的機(jī)械性能。同時,協(xié)同優(yōu)化膜通道的物理、化學(xué)微環(huán)境,強(qiáng)化了質(zhì)子傳導(dǎo)率,膜在80 oC傳導(dǎo)率達(dá)到364 mS cm-1,為目前報道的最優(yōu)值之一。
[Abstract]:Proton exchange membrane fuel cell (PEMFC), as a new type of power generation device, has the characteristics of high efficiency, zero pollution and so on. PEM plays an important role in the field of energy. PEM is its "heart", which determines the battery power. The development of PEM with high transfer performance is a key challenge to realize the large-scale application of PEMFC. In order to lay a foundation for membrane structure design, the relationship between membrane channel and transport characteristics must be revealed from molecular scale to micro-nanometer scale. The main objective of this study is to optimize the transport performance of PEM. Around the chain of oriented design of membrane material, rational construction of membrane channel, cooperative regulation of membrane microenvironment and optimization of membrane transfer characteristics, the bionic and hybrid ideas are combined, and the relationship between microenvironment and transfer characteristics is revealed. In order to provide theoretical guidance and technical support for the large-scale preparation of high performance PEM, the main research results are as follows: membrane chemical microenvironment regulation and proton transport process are strengthened, inspired by the mechanism of plant water retention. The hydrophobic and adjustable carboxylic acid microcapsules (PMCs) were prepared and blended with sulfonated polyether ether ketones to prepare hybrid membranes. The water environment (chemical microenvironment) of the transfer channel was optimized to increase the conductivity of the membrane at low humidity by 13 times. The amphoteric ion microcapsule ZMCs was prepared and mixed with Nafion to prepare hybrid membrane. The channel water environment and the proton carrier (chemical microenvironment) enhance the proton conduction of the hybrid membrane at low humidity (increase by 21 times. Chemical microenvironment coordinated regulation and proton transfer process strengthening. FCNTs were prepared and blended with Nafion to prepare hybrid membranes. It was found that: FCNTs co-optimized the physical and chemical microenvironment of membrane channels. The proton conduction was enhanced by 5 times, and the FCNTs constructed a highly continuous proton transfer channel in the physical microenvironment. In the chemical microenvironment, FCNTs contain high density ionic groups. Through the direct assembly of phosphonated graphene oxide nanocrystals, a penetrating channel was constructed in the PGO film. It overcomes the limitation of amphiphilic polymer membrane in constructing channel. In physical microenvironment, the regular arrangement of go nanometre builds the super continuous channel through the membrane, and in the chemical microenvironment, The phosphonic acid group can form a dynamic hydrogen bond network independently. The membrane physical and chemical microenvironment coordinated regulation and the proton / methanol transport characteristics are optimized. The ultrathin graphene oxide (GluO) film is assembled on the surface of the Nafion film. The composite membrane was prepared. It was found that the proton conductivity and alcohol resistance were improved simultaneously because of the synergistic optimization of the transfer channels in the surface go membrane. By assembling two-dimensional inorganic materials and polymer SPVA, PEMs imitating the structure of pearl layer were prepared for the first time. It was found that due to the synergistic effect between two-dimensional materials and polymers, PEMs were prepared by chemical microenvironment coordination control and proton transfer and mechanical properties optimization. At the same time, the membrane exhibits excellent mechanical properties and enhances the proton conductivity by optimizing the physical and chemical microenvironment of the membrane channel. The conductivity of the membrane reaches 364mScm-1 at 80oC, which is one of the best reported values at present.
【學(xué)位授予單位】:天津大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2016
【分類號】:TB383.2;TM911.4
,

本文編號:1661202

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/huaxuehuagong/1661202.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶e6be7***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com