三維電極微生物燃料電池高級(jí)氧化水中對(duì)硝基苯酚研究
發(fā)布時(shí)間:2018-02-24 16:48
本文關(guān)鍵詞: 三維電極 微生物燃料電池 過(guò)氧化氫 高級(jí)氧化 對(duì)硝基苯酚 出處:《天津大學(xué)》2015年博士論文 論文類型:學(xué)位論文
【摘要】:水中難降解有機(jī)污染物的有效去除是環(huán)境領(lǐng)域研究的熱點(diǎn),并且能源短缺問(wèn)題促使清潔的工程技術(shù)研發(fā)成為緊迫的課題。本文構(gòu)建新型三維電極微生物燃料電池(MFC),通過(guò)對(duì)氧還原陰極的研究將MFC從產(chǎn)電裝置轉(zhuǎn)變?yōu)樯a(chǎn)過(guò)氧化氫的反應(yīng)器,并引入微生物電解電池的概念,達(dá)到增加過(guò)氧化氫產(chǎn)量的目的;并在此基礎(chǔ)上,通過(guò)外加或負(fù)載鐵離子的方式構(gòu)建三維電極MFC-Fenton系統(tǒng),處理水中對(duì)硝基苯酚(PNP)污染,實(shí)現(xiàn)陽(yáng)極室和陰極室同步處理有機(jī)廢水。主要研究?jī)?nèi)容和結(jié)果如下:制備碳-PTFE顆粒電極用于MFC陰極生產(chǎn)過(guò)氧化氫,實(shí)驗(yàn)證明其是有效的陽(yáng)極有機(jī)物降解和陰極過(guò)氧化氫制備的系統(tǒng)。石墨-PTFE顆粒電極MFC(MFC-GPEs)在過(guò)氧化氫制備性能上有很好的表現(xiàn),但產(chǎn)電性能較差。MFC-GPEs在相對(duì)較高的電流密度下運(yùn)行24 h后,過(guò)氧化氫濃度達(dá)到196.50mg·L~(-1),COD去除率為84%。在MFC-GPEs外加電壓,對(duì)其陽(yáng)極COD去除性能和陰極過(guò)氧化氫產(chǎn)量提高具有積極的影響。但是,過(guò)高的電壓將引起陰極副反應(yīng)產(chǎn)生氫氣降低過(guò)氧化氫的產(chǎn)量。綜合考慮過(guò)氧化氫產(chǎn)量,MFC電流效率和陽(yáng)極COD去除率,最佳外加電壓是0.4 V。此時(shí),MFC在外電阻10Ω下運(yùn)行8 h,以2.12 kg·m-3·day~(-1)的生產(chǎn)速率生產(chǎn)過(guò)氧化氫705.6 mg·L~(-1)。生產(chǎn)1 kg過(guò)氧化氫輸入的能量為0.659 kWh。在MFC-GPEs陰極外加亞鐵離子構(gòu)建MFC-Fenton系統(tǒng),由于PNP被吸附在顆粒電極的表面增加了其反應(yīng)機(jī)會(huì)從而提高了PNP去除效率。較低的陰極液初始pH值,中等的亞鐵離子投加量以及較小的外電阻更有利于該系統(tǒng)降解水中PNP。當(dāng)系統(tǒng)在初始PNP濃度50 mg·L~(-1),亞鐵離子投加量0.025 mol·L~(-1),pH為3和外電阻為20Ω的最佳參數(shù)下運(yùn)行8 h,PNP降解率達(dá)到了95.7%。系統(tǒng)運(yùn)行9個(gè)周期,其PNP降解率均可穩(wěn)定在90%并能夠持續(xù)輸出電能。在GPEs表面負(fù)載鐵氧化物制備復(fù)合電極(FO/GPEs),使用復(fù)合電極的MFC系統(tǒng)具有較佳的產(chǎn)電性能、原位電化學(xué)制備H2O2能力和催化Fenton反應(yīng)能力,且表現(xiàn)出中性條件下運(yùn)行的可行性。在中性條件下,PNP降解率(8 h)和TOC去除率(64 h)均達(dá)到85%左右。該系統(tǒng)的降解機(jī)理是典型Haber Weiss機(jī)理和表面異相催化反應(yīng)的結(jié)合。
[Abstract]:The effective removal of refractory organic pollutants in water is a hot topic in the field of environment. The problem of energy shortage makes the research and development of clean engineering technology urgent. In this paper, a new type of three-dimensional electrode microbial fuel cell (MFCs) is constructed, and the oxygen reduction cathode is studied to transform MFC from an electric device to a reactor for producing hydrogen peroxide. The concept of microbial electrolytic battery was introduced to increase the production of hydrogen peroxide, and on this basis, a three-dimensional electrode MFC-Fenton system was constructed by adding or loading iron ions to treat the pollution of p-nitrophenol in water. The main research contents and results are as follows: preparation of carbon-PTFE particle electrode for MFC cathode to produce hydrogen peroxide. It is proved by experiments that it is an effective system for anodic organic degradation and cathodic hydrogen peroxide preparation. The graphite PTFE particle electrode MFCMFC-GPEs has a good performance in the preparation of hydrogen peroxide. However, after running at a relatively high current density for 24 hours, the hydrogen peroxide concentration reached 196.50 mg 路L ~ (-1) and the removal rate of hydrogen peroxide was 84%. Under the applied voltage of MFC-GPEs, it had a positive effect on the removal performance of anode COD and the increase of hydrogen peroxide production at cathode. If the voltage is too high, hydrogen will be produced in the cathode side reaction to reduce the hydrogen peroxide production. Considering the hydrogen peroxide output, the current efficiency of the MFC and the removal rate of the anode COD will be taken into account. The optimum applied voltage is 0.4 V. at this time, the hydrogen peroxide is 705.6 mg 路L ~ (-1) 路L ~ (-1) hydrogen peroxide is produced at the production rate of 2.12 kg 路m ~ (-3) 路d ~ (-1) at an external resistance of 10 惟 for 8 h. The input energy of producing 1 kg hydrogen peroxide is 0.659 kWh. the MFC-Fenton system is constructed by adding ferrous ions to the MFC-GPEs cathode. Because PNP is adsorbed on the surface of the particle electrode, the reaction chance is increased and the removal efficiency of PNP is improved. When the initial concentration of PNP was 50 mg 路L ~ (-1), the dosage of Fe ~ (2 +) was 0.025 mol 路L ~ (-1) (pH = 3) and the external resistance was 20 惟, the system could degrade PNPs for 8 h. The system runs for 9 cycles. The PNP degradation rate of the composite electrode is stable at 90% and the electric energy can be continuously produced. The MFC system using the composite electrode has better electrical properties, in situ electrochemical preparation of H _ 2O _ 2 and catalyzing the Fenton reaction, when the composite electrode is prepared by iron oxide on the surface of GPEs. Under neutral conditions, the degradation rate of PNPs and the removal efficiency of TOC reached about 85%. The degradation mechanism of the system is the combination of typical Haber Weiss mechanism and surface heterogeneous catalytic reaction.
【學(xué)位授予單位】:天津大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類號(hào)】:TM911.45
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 陳武,李凡修,梅平;三維電極方法處理石油工業(yè)廢水COD的實(shí)驗(yàn)研究[J];環(huán)境科學(xué)與技術(shù);2001年S1期
2 曹瑩,周育紅,孫克寧,周德瑞;三維電極在水處理技術(shù)中的應(yīng)用[J];黑龍江電力;2001年02期
3 蔣萌陽(yáng),朱建榮,戴靜波;復(fù)極性三維電極處理印染廢水的能耗分析[J];寧波工程學(xué)院學(xué)報(bào);2005年02期
4 張斌,劉井軍,車玉泉;三維電極法處理印染廢水的實(shí)驗(yàn)研究[J];吉林化工學(xué)院學(xué)報(bào);2005年04期
5 郭玉鳳;王振川;李景印;李敏;王s,
本文編號(hào):1530989
本文鏈接:http://sikaile.net/kejilunwen/huaxuehuagong/1530989.html
最近更新
教材專著