球形氫氧化鎂的合成、磷硅改性及阻燃EVA的研究
本文關(guān)鍵詞: 氫氧化鎂 磷-硅協(xié)同效應(yīng) 改性 阻燃劑 出處:《河北大學》2015年碩士論文 論文類型:學位論文
【摘要】:氫氧化鎂(MH)因其同時具有阻燃、抑煙、良好的熱穩(wěn)定性及環(huán)境友好等多重優(yōu)點,成為世界各國重點研究的一種無機無鹵阻燃劑。但目前氫氧化鎂由于自身阻燃效率低,其在阻燃應(yīng)用中添加量大,導致高分子材料的機械性能驟降。改善氫氧化鎂的表面性質(zhì),從而提高氫氧化鎂與高分子材料的相容性,減少氫氧化鎂的添加量,成為目前國內(nèi)外的研究熱點。本文采用反向沉淀法制備了花狀球形氫氧化鎂微球,并利用9,10-二氫-9-氧雜-10-磷雜菲-10-氧化物(DOPO)和γ-環(huán)氧丙氧基丙基三甲氧基硅烷(KH560)作為磷源和硅源對氫氧化鎂進行表面磷硅改性,在改善氫氧化鎂在高分子基體中分散性的同時,提高材料的阻燃性能。本文主要分為以下三部分:第一部分:采用反向沉淀法,以七水合硫酸鎂和氨水為原料,合成了具有花狀球形的氫氧化鎂。同時分別探索了反應(yīng)物起始濃度、攪拌時間、陳化時間、反應(yīng)溫度和滴加速度對氫氧化鎂形貌和粒徑的影響。采用掃描電鏡(SEM)表征了合成氫氧化鎂的形貌和粒徑,X射線衍射(XRD)、傅里葉紅外光譜(FTIR)表征了其分子結(jié)構(gòu)。結(jié)果表明,合成氫氧化鎂的最佳條件是氨水濃度為5wt%,硫酸鎂濃度為1mol/L,溫度為20oC,攪拌時間為10min,陳化時間為1h,滴加速度為3m L/min。隨著反應(yīng)物起始濃度的增加,氫氧化鎂的形貌由類球形變成規(guī)則的球形,濃度繼續(xù)增加球形輪廓變模糊,而粒徑則隨著反應(yīng)物濃度的增加先變小后增大;攪拌時間增長,氫氧化鎂的形貌變規(guī)則,粒徑也隨之減小;一定的陳化時間有利于氫氧化鎂由亞穩(wěn)態(tài)結(jié)構(gòu)向穩(wěn)態(tài)結(jié)構(gòu)轉(zhuǎn)變;反應(yīng)溫度過低、過高都不利于氫氧化鎂球形的生長;滴加速度越慢,氫氧化鎂的形貌越規(guī)則,粒徑越小。氫氧化鎂微球的粒徑總體呈現(xiàn)先減小后增大的規(guī)律,最小可達500nm,但由于團聚,部分微球粒徑大約在1-3μm之間。第二部分:以DOPO和KH560為原料,通過接枝反應(yīng)合成了磷硅改性氫氧化鎂(MHDK)。采用FTIR、XRD表征了其化學結(jié)構(gòu),FTIR結(jié)果顯示MHDK出現(xiàn)P-Ar、P-O-Ph、Si-O-Mg、基團峰,同時-OH的數(shù)量大大減少。XRD數(shù)據(jù)顯示MHDK沒有改變MH的晶型結(jié)構(gòu),DOPO和KH560僅僅是接枝于MH表面,接觸角實驗表明MHDK的接觸角由8.31o增加到35.96o,疏水性有了一定的提高。熱重分析表明改性后的氫氧化鎂熱穩(wěn)定性能有了一定的提高,通過殘余率可計算MHDK的接枝量約為3%。MHDK的起始分解溫度相對于MH提高了20oC。第三部分:將改性前后的氫氧化鎂添加到EVA中,制備了MH/EVA及MHDK/EVA復(fù)合材料。極限氧指數(shù)(LOI)實驗表明MHDK能顯著提高材料的阻燃性能,50wt%添加量的材料的極限氧指數(shù)從28%提高到29.2%,熱重分析表明MHDK的加入使材料的熱穩(wěn)定性提高,50wt%MHDK添加量的材料的起始熱分解溫度提高了25oC,殘?zhí)柯试黾?.4%。對材料的殘?zhí)窟M行了FTIR、SEM分析,結(jié)果表明燃燒后的殘?zhí)勘砻鏆埩鬚、Si元素,殘?zhí)恐械暮孜镔|(zhì)促進材料成炭。同時由于MHDK的增加,殘?zhí)績?nèi)部出現(xiàn)大量孔洞,外部光滑平整無裂痕,且殘?zhí)亢穸仍黾?起到了隔熱、抑制有害氣體溢出的作用。拉伸測試實驗結(jié)果顯示MHDK/EVA復(fù)合材料比MH/EVA復(fù)合材料的拉伸強度和伸長率增高,表明MHDK與EVA材料的相容性有所增加。MHDK的表面極性有一定的改善,加入MHDK的材料阻燃性能提高,極限氧指數(shù)比添加MH的材料提高了1%。同時,MHDK與材料的相容性提高,提高了材料的力學性能。
[Abstract]:Magnesium hydroxide (MH) at the same time because of its flame retardant, smoke suppression, thermal stability and environment friendly multiple advantages, become a focus of research in the world inorganic halogen free flame retardant magnesium hydroxide flame retardant. But at the moment, because of its low efficiency, the added amount of flame retardant in application, so that the mechanical properties of polymer materials. Sag to improve the surface properties of magnesium hydroxide and magnesium hydroxide, so as to improve the compatibility of polymer materials, reducing the amount of magnesium hydroxide, become a hot topic at home and abroad. This paper uses reverse flower ball shaped magnesium hydroxide microspheres were prepared by precipitation method, and the use of 9,10- two hydrogen -9- oxa phosphaphenanthrene -10- -10- oxide (DOPO) and gamma glycidoxypropyl trimethoxysilane (KH560) as the source of phosphorus and silicon source of magnesium hydroxide were surface modified with phosphorus and silicon, in the improvement of magnesium hydroxide in polymer dispersion at the same time,. Flame retardant high performance materials. This paper is mainly divided into the following three parts: the first part: by reverse precipitation method with seven water Magnesium Sulfate and ammonia as raw materials, with the synthesis of spherical flower like magnesium hydroxide. At the same time respectively to explore the initial concentration of reactants, stirring time, aging time, the effects of reaction temperature and dropping speed of the morphology and particle size of magnesium hydroxide. Using scanning electron microscopy (SEM) characterization of the morphology and particle size of magnesium hydroxide, X ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) characterization of the molecular structure. The results show that the best conditions of the synthesis of Magnesium Oxide's hydrogen ammonia concentration is 5wt%, the Magnesium Sulfate concentration is 1mol/L, temperature 20oC, the stirring time was 10min, the aging time was 1H, 3M L/min. with the increase of initial concentration of reactants dropping, magnesium hydroxide morphology from spherical into regular spherical, with increasing concentration of spherical contour Fuzzy, and the particle size with increasing reactant concentration decreases first and then increases; stirring time increases, the morphology of magnesium hydroxide change rule, particle size decreases; the aging time is conducive to the transformation of magnesium hydroxide from the metastable structure to the stable structure; low reaction temperature is too high, is not conducive to the growth of spherical magnesium hydroxide; dropping speed is slower, the more regular morphology of magnesium hydroxide, the smaller the particle size of magnesium hydroxide. The particle size of the microspheres showed decreased first and then increased the law, the minimum of up to 500nm, but because of agglomeration, particle size of about 1-3 parts. The second part: m between DOPO and KH560 as raw materials, was synthesized by grafting reaction phosphorus silicon modified magnesium hydroxide (MHDK). Using FTIR, XRD characterization of the chemical structure of FTIR, the results showed that MHDK P-Ar, P-O-Ph, Si-O-Mg, and -OH groups of peaks, greatly reducing the number of.XRD data show that MHDK did not change MH The crystal structure of DOPO and KH560 is grafted on the surface of MH, the contact angle experiments show that the contact angle of MHDK increased from 8.31o to 35.96o, the hydrophobicity is improved. Thermogravimetric analysis showed that thermal stability of modified magnesium hydroxide has been improved to some extent, the grafting amount can be calculated by the residual rate of about MHDK 3%.MHDK the initial decomposition temperature higher than MH 20oC. in third parts: before and after the modified magnesium hydroxide added to the EVA, MH/EVA and MHDK/EVA composite materials were prepared. The limiting oxygen index (LOI) experiments showed that MHDK could significantly improve the flame retardant properties of materials, the limiting oxygen index of adding amount of 50wt% material increased to 29.2% from 28%, thermogravimetric analysis showed that the addition of MHDK can improve the thermal stability of the materials, the amount of 50wt%MHDK the initial thermal decomposition temperature of the material increases 25oC, carbon yield increased 1.4%. of carbon materials were investigated by FTIR, SEM analysis. The results show that the residual carbon surface residue after combustion of P, Si elements, phosphorus carbon residue in promoting material into carbon. At the same time as the MHDK increases, the residual carbon inside a large number of holes, external smooth cracks, and the residual carbon thickness increases, to heat insulation, inhibit harmful gas overflow effect. The tensile test the experimental results show that the MHDK/EVA composite is MH/EVA tensile strength and elongation of the composite increased, indicating that MHDK and EVA compatibility of materials increased.MHDK surface polarity has a certain improvement, improve the flame retardant properties of materials of joining the MHDK, the limiting oxygen index was increased by 1%. and MH than adding materials, improve the compatibility of MHDK and materials the mechanical properties of the materials were improved.
【學位授予單位】:河北大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:TQ132.2;TQ325
【參考文獻】
相關(guān)期刊論文 前10條
1 王偉;顧惠敏;翟玉春;戴永年;;球形氫氧化鎂的制備及其晶體生長動力學[J];材料研究學報;2008年06期
2 俞振海;盧晗鋒;王春來;陳銀飛;;高填充量下氫氧化鎂粒子尺寸對其填充聚丙烯材料性能影響[J];高;瘜W工程學報;2010年05期
3 黎明杰;張興華;;復(fù)合改性制備超細球形氫氧化鎂的研究[J];廣東化工;2014年10期
4 董海波;杜志平;趙永紅;周大鵬;;SDS/APG改性納米氫氧化鎂的合成及其性能研究[J];鹽業(yè)與化工;2010年03期
5 李錦,歐育湘;氫氧化鎂表面處理工藝對阻燃PP性能的影響[J];塑料工業(yè);2003年12期
6 呂明福,張師軍,徐日煒,余鼎聲;聚磷酸銨阻燃聚丙烯的研究[J];塑料工業(yè);2004年08期
7 李碧英;張帆;彭波;;白度化微膠囊紅磷阻燃劑的制備及其應(yīng)用[J];塑料科技;2007年09期
8 齊興國;黃兆閣;李榮勛;丁乃秀;劉光燁;;Mg(OH)_2/PP和APP/PP阻燃復(fù)合材料的性能對比[J];塑料助劑;2007年01期
9 嚴滿清;王海燕;劉春華;唐龍祥;;納米Mg(OH)_2阻燃PP的性能研究[J];塑料;2009年02期
10 徐林林;張華;杜喜玲;祝建;鐘新華;;納米氫氧化鎂的合成及其形貌控制[J];無機化學學報;2009年10期
相關(guān)碩士學位論文 前5條
1 馬曉芳;超細氫氧化鎂制備的研究[D];鄭州大學;2010年
2 任明;超細紅磷膠囊化及其在無鹵阻燃聚丙烯中的應(yīng)用[D];南京理工大學;2004年
3 胡娜;超細氫氧化鎂的制備及其在木塑復(fù)合材料中的應(yīng)用研究[D];中南林業(yè)科技大學;2013年
4 孫雨;鹵水-堿法制備阻燃級氫氧化鎂與其改性分析[D];華東師范大學;2013年
5 王念貽;硅烷偶聯(lián)劑改性氫氧化鎂及其在EVA中的應(yīng)用[D];西安電子科技大學;2014年
,本文編號:1528936
本文鏈接:http://sikaile.net/kejilunwen/huaxuehuagong/1528936.html