氨基化磁性玉米粉/殼聚糖樹(shù)脂吸附展青霉素
發(fā)布時(shí)間:2021-02-01 07:59
展青霉素是一種由青霉屬、曲霉屬及絲衣霉屬中多種微生物產(chǎn)生的次級(jí)代謝產(chǎn)物,具有廣泛的急性、慢性和細(xì)胞水平的毒性,對(duì)蘋(píng)果及蘋(píng)果汁污染最為嚴(yán)重。本論文以模擬溶液和蘋(píng)果汁中的展青霉素為研究體系,探討水不溶玉米粉及氨基化磁性玉米粉/殼聚糖樹(shù)脂(Triethylene tetramine-modified water-insoluble corn flour caged in magnetic chitosan resin,TETA-WICF/MCR)對(duì)展青霉素的吸附特性及相關(guān)機(jī)理。具體內(nèi)容及結(jié)果如下:1.制備了一種能夠吸附模擬溶液中展青霉素的水不溶玉米粉,考察其對(duì)展青霉素去除能力的主要影響因素,通過(guò)等溫吸附研究、動(dòng)力學(xué)研究、熱力學(xué)研究、掃描電鏡分析和傅里葉變換紅外光譜分析對(duì)吸附機(jī)理進(jìn)行初步研究。結(jié)果表明,水不溶玉米粉能有效吸附模擬溶液中的展青霉素,粒徑、時(shí)間、pH值和溫度是影響吸附的重要因素。水不溶玉米粉對(duì)展青霉素的吸附為多層吸附,顆粒內(nèi)擴(kuò)散是吸附的主要速率控制步驟,且吸附是吸熱和自發(fā)的過(guò)程。在25℃,Langmuir模型擬合得到的最大吸附量為68.02μg/g。掃描電鏡表征發(fā)現(xiàn)吸附前后水不溶玉...
【文章來(lái)源】:山西大學(xué)山西省
【文章頁(yè)數(shù)】:111 頁(yè)
【學(xué)位級(jí)別】:碩士
【文章目錄】:
Chinese Abstract
Abstract
Chapter 1 Review of the literature
1.1 Overview of apple and apple juice production
1.1.1 World production of apple and apple juice
1.1.2 China’s production of apple and apple juice
1.2 Postharvest decay of apple caused by Penicillium expansum
1.2.1 Postharvest diseases of apple fruit
1.2.2 Penicillium expansum infection in apple fruit
1.3 Mycotoxin patulin
1.3.1 History and regulation of patulin
1.3.2 Chemical and physical properties of patulin
1.3.3 Health implication of patulin
1.3.4 Biosynthesis of patulin
1.3.5 Patulin determination
1.3.6 Patulin within foods
1.4 Apple juice processing and their effect on patulin
1.4.1 Control during apple harvest
1.4.2 Control during transport
1.4.3 Control during storage
1.4.4 Control during washing
1.4.5 Control during juice pressing, extraction, clarification and filtration
1.4.6 Pasteurization
1.4.7 Novel processing technologies
1.4.8 Chemical modification
1.4.9 Biological control
1.4.10 Adsorption
1.5 The significance and main content of the study
1.5.1 The significance of the study
1.5.2 Main content of the study
Chapter 2 Assessment of patulin adsorption efficacy from juice-p H simulation aqueous bywater-insoluble corn flour
2.1 Introduction
2.2 Materials and methods
2.2.1 Materials
2.2.2 Preparation of WICF with different granularity
2.2.3 Batch adsorption experiments
2.2.4 Characterization of WICF
2.2.5 Patulin detection by HPLC
2.2.6 Statistical analysis
2.3 Results and discussion
2.3.1 Effect of granularity of WICF on patulin adsorption
2.3.2 Effect of adsorbent dosage on patulin adsorption
2.3.3 Effect of contact time and temperature on patulin adsorption
2.3.4 Effect of p H on patulin adsorption
2.3.5 Effect of initial concentration of patulin on patulin adsorption
2.3.6 Adsorption isotherm modeling
2.3.7 Adsorption kinetic studies
2.3.8 Thermodynamic studies
2.3.9 SEM study
2.3.10 FTIR spectroscopic analysis
2.3.11 Adsorption of patulin in various fruit juices by WICF
2.4 Conclusions
Chapter 3 Preparation and characterization of triethylene tetramine-modified water-insolublecorn flour caged in magnetic chitosan resin for adsorption of patulin
3.1 Introduction
3.2 Materials and methods
3.2.1 Materials
3.2.2 Preparation of TETA-WICF/MCR and control group
3.2.3 Optimization of TETA-WICF/MCR preparation conditions
3.2.4 Characterization of TETA-WICF/MCR
3.2.5 Adsorption experiments
3.2.6 Patulin extraction and quantification
3.2.7 Statistical analysis
3.3 Results and discussion
3.3.1 Optimization of TETA-WICF/MCR preparation conditions
3.3.2 Particle size and the morphology of TETA-WICF/MCR
3.3.3 FTIR spectroscopic analysis
3.3.4 X-ray diffraction analysis
3.3.5 Magnetic separation performance
3.3.6 Mechanical property and swelling behavior
3.4 Conclusions
Chapter 4 Assessment of patulin adsorption efficacy from apple juice by triethylenetetramine-modified water-insoluble corn flour caged in magnetic chitosan resin
4.1 Introduction
4.2 Materials and methods
4.2.1 Materials
4.2.2 Batch adsorption experiments
4.2.3 Characterization of TETA-WICF/MCR
4.2.4 Quality parameters of apple juice determination
4.2.5 Patulin extraction and quantification
4.2.6 Statistical analysis
4.3 Results and discussion
4.3.1 Effect of adsorbent dosage on patulin adsorption
4.3.2 Effect of contact time on patulin adsorption
4.3.3 Effect of temperature on patulin adsorption
4.3.4 Effect of p H on patulin adsorption
4.3.5 Effect of initial concentration of patulin on patulin adsorption
4.3.6 Adsorption isotherm modeling
4.3.7 Adsorption kinetic studies
4.3.8 SEM study
4.3.9 FTIR spectroscopic analysis
4.3.10 Effect of TETA-WICF/MCR addition on quality parameters of juice
4.4 Conclusions
Chapter 5 Conclusions and future work
5.1 Conclusions
5.2 Future work
References
Appendix
攻讀學(xué)位期間取得的研究成果
致謝
個(gè)人簡(jiǎn)況及聯(lián)系方式
本文編號(hào):3012456
【文章來(lái)源】:山西大學(xué)山西省
【文章頁(yè)數(shù)】:111 頁(yè)
【學(xué)位級(jí)別】:碩士
【文章目錄】:
Chinese Abstract
Abstract
Chapter 1 Review of the literature
1.1 Overview of apple and apple juice production
1.1.1 World production of apple and apple juice
1.1.2 China’s production of apple and apple juice
1.2 Postharvest decay of apple caused by Penicillium expansum
1.2.1 Postharvest diseases of apple fruit
1.2.2 Penicillium expansum infection in apple fruit
1.3 Mycotoxin patulin
1.3.1 History and regulation of patulin
1.3.2 Chemical and physical properties of patulin
1.3.3 Health implication of patulin
1.3.4 Biosynthesis of patulin
1.3.5 Patulin determination
1.3.6 Patulin within foods
1.4 Apple juice processing and their effect on patulin
1.4.1 Control during apple harvest
1.4.2 Control during transport
1.4.3 Control during storage
1.4.4 Control during washing
1.4.5 Control during juice pressing, extraction, clarification and filtration
1.4.6 Pasteurization
1.4.7 Novel processing technologies
1.4.8 Chemical modification
1.4.9 Biological control
1.4.10 Adsorption
1.5 The significance and main content of the study
1.5.1 The significance of the study
1.5.2 Main content of the study
Chapter 2 Assessment of patulin adsorption efficacy from juice-p H simulation aqueous bywater-insoluble corn flour
2.1 Introduction
2.2 Materials and methods
2.2.1 Materials
2.2.2 Preparation of WICF with different granularity
2.2.3 Batch adsorption experiments
2.2.4 Characterization of WICF
2.2.5 Patulin detection by HPLC
2.2.6 Statistical analysis
2.3 Results and discussion
2.3.1 Effect of granularity of WICF on patulin adsorption
2.3.2 Effect of adsorbent dosage on patulin adsorption
2.3.3 Effect of contact time and temperature on patulin adsorption
2.3.4 Effect of p H on patulin adsorption
2.3.5 Effect of initial concentration of patulin on patulin adsorption
2.3.6 Adsorption isotherm modeling
2.3.7 Adsorption kinetic studies
2.3.8 Thermodynamic studies
2.3.9 SEM study
2.3.10 FTIR spectroscopic analysis
2.3.11 Adsorption of patulin in various fruit juices by WICF
2.4 Conclusions
Chapter 3 Preparation and characterization of triethylene tetramine-modified water-insolublecorn flour caged in magnetic chitosan resin for adsorption of patulin
3.1 Introduction
3.2 Materials and methods
3.2.1 Materials
3.2.2 Preparation of TETA-WICF/MCR and control group
3.2.3 Optimization of TETA-WICF/MCR preparation conditions
3.2.4 Characterization of TETA-WICF/MCR
3.2.5 Adsorption experiments
3.2.6 Patulin extraction and quantification
3.2.7 Statistical analysis
3.3 Results and discussion
3.3.1 Optimization of TETA-WICF/MCR preparation conditions
3.3.2 Particle size and the morphology of TETA-WICF/MCR
3.3.3 FTIR spectroscopic analysis
3.3.4 X-ray diffraction analysis
3.3.5 Magnetic separation performance
3.3.6 Mechanical property and swelling behavior
3.4 Conclusions
Chapter 4 Assessment of patulin adsorption efficacy from apple juice by triethylenetetramine-modified water-insoluble corn flour caged in magnetic chitosan resin
4.1 Introduction
4.2 Materials and methods
4.2.1 Materials
4.2.2 Batch adsorption experiments
4.2.3 Characterization of TETA-WICF/MCR
4.2.4 Quality parameters of apple juice determination
4.2.5 Patulin extraction and quantification
4.2.6 Statistical analysis
4.3 Results and discussion
4.3.1 Effect of adsorbent dosage on patulin adsorption
4.3.2 Effect of contact time on patulin adsorption
4.3.3 Effect of temperature on patulin adsorption
4.3.4 Effect of p H on patulin adsorption
4.3.5 Effect of initial concentration of patulin on patulin adsorption
4.3.6 Adsorption isotherm modeling
4.3.7 Adsorption kinetic studies
4.3.8 SEM study
4.3.9 FTIR spectroscopic analysis
4.3.10 Effect of TETA-WICF/MCR addition on quality parameters of juice
4.4 Conclusions
Chapter 5 Conclusions and future work
5.1 Conclusions
5.2 Future work
References
Appendix
攻讀學(xué)位期間取得的研究成果
致謝
個(gè)人簡(jiǎn)況及聯(lián)系方式
本文編號(hào):3012456
本文鏈接:http://sikaile.net/kejilunwen/huaxue/3012456.html
最近更新
教材專(zhuān)著