天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 化學論文 >

金屬配體增強天然高分子基自愈合水凝膠的制備與性能研究

發(fā)布時間:2020-12-02 12:40
  天然聚合物的自修復水凝膠因為其應用廣泛而倍受關注。然而,設計出具有自愈效率高和機械強度強的水凝膠仍然是一個巨大的挑戰(zhàn)。因此,開發(fā)出具有自愈能力且機械強度高的水凝膠仍然是發(fā)展水凝膠材料的主要目標。本研究提供了一種簡單而經濟的方法,來合成天然聚合物的自修復水凝膠,且這種天然聚合物的自修復水凝膠通過金屬-配體相互作用將鐵離子插入到物理交聯的網絡中,其機械性能得到增強。研究發(fā)現天然聚合物、鐵離子以及丙烯酸(AA)單體濃度等因素都會提高水凝膠的機械性能和自修復能力。并且我們也系統的研究了兩種天然多糖(羥乙基纖維素(HEC)和糖原(Gly))的濃度對水凝膠的機械性能和自修復能力的影響。本論文首先通過動態(tài)金屬配體(M-L)相互作用合成了含有羥乙基纖維素的鐵離子(HEC/PAA-Fe3+),且自我修復性和機械性能都得到增強的水凝膠。因為將三價鐵離子(Fe3+)引入物理性交聯網絡聚合物(HEC/PAA)中,從而出現了動態(tài)能量耗散配位鍵,也正是因為這樣凝膠的整體機械性能和自愈效率大大提高。而且(HEC/PAA-Fe3+)水凝膠在沒有任何外部... 

【文章來源】:東南大學江蘇省 211工程院校 985工程院校 教育部直屬院校

【文章頁數】:174 頁

【學位級別】:博士

【文章目錄】:
Acknowledgement
摘要
Abstract
Chapter 1 Introduction
    1.1 Gel and hydrogel
    1.2 Hydrosol and hydrogel
    1.3 Classification of hydrogels
    1.4 Classification based on source
        1.4.1 Natural polymer hydrogel
        1.4.2 Synthetic polymer hydrogel
    1.5 Classification based on the polymeric composition
        1.5.1 Homopolymeric hydrogels
        1.5.2 Copolymeric hydrogels
        1.5.3 Multipolymeric hydrogels
    1.6 Classification based on configuration
        1.6.1 Crystalline
        1.6.2 Amorphous (non-crystalline)
        1.6.3 Semi-crystalline
    1.7 Classification based on physical appearance
        1.7.1 Matrix
        1.7.2 Film
        1.7.3 Microsphere
    1.8 Classification based on network electrical charge
        1.8.1 Ionic hydrogels (anionic or cationic)
        1.8.2 Neutral hydrogels (non-ionic)
        1.8.3 Ampholytic hydrogels
        1.8.4 Polybetaines hydrogels (zwitterionic)
    1.9 Classification based on cross-linking
        1.9.1 Physically cross-linked hydrogels
        1.9.2 Chemically cross-linked hydrogels
    1.10 Classification based on physical state
        1.10.1 Solid hydrogels
        1.10.2 Semisolid hydrogels
        1.10.3 Liquid hydrogels
    1.11 Methods for synthesizing physically cross-linked hydrogels
        1.11.1 Ionic interactions
        1.11.2 Hydrogen bonding interactions
        1.11.3 Hydrophobic interactions
        1.11.4 Stereo-complexation
        1.11.5 Supramolecular chemistry
        1.11.6 Freeze-thawing
        1.11.7 Maturation (heat-induced aggregation)
    1.12 Natural polymer-based hydrogels
        1.12.1 Hyaluronic acid-based hydrogels
        1.12.2 Alginate
        1.12.3 Chitosan
        1.12.4 Cellulose
        1.12.5 Hydroxyethyl cellulose (HEC)
    1.13 Self-healing
    1.14 Self-healing process
        1.14.1 Autonomic self-healing hydrogels
        1.14.2 Non-autonomic self-healing hydrogels
    1.15 Classification of self-healing hydrogels
        1.15.1 Inorganic-based self-healing hydrogels
        1.15.2 Polymer-based self-healing hydrogels
        1.15.3 Nanocomposite based self-healing hydrogels
    1.16 Mechanism of self-healing of hydrogels
        1.16.1 Physically (diffusion) self-healing mechanism
        1.16.2 Chemically self-healing mechanism
    1.17 Factors impact on self-healing mechanism
        1.17.1 Separation time
        1.17.2 Self-healing time
        1.17.3 Temperature
        1.17.4 Chain length
        1.17.5 The content of nanomaterials
    1.18 Sacrificial bonds
    1.19 Nature and mechanisms of sacrificial bonds
        1.19.1 Sacrificial bonds in biological materials
        1.19.2 Constitutive theories of sacrificial bonding systems
    1.20 Inspired sacrificial bonds in artificial polymeric materials
        1.20.1 Sacrificial covalent bonds
        1.20.2 Sacrificial non-covalent bonds
    1.21 Sacrificial bonds in hydrogels
        1.21.1 Sacrificial ionic bonds
        1.21.2 Sacrificial hydrogen bonds
        1.21.3 Sacrificial metal-ligand coordination bonds
        1.21.4 Sacrificial hydrophobic interactions
        1.21.5 Sacrificial host-guest complexes
    1.22 Metal-ligand polymer hydrogels
        1.22.1 Crosslinked hydrogels via metal coordination
        1.22.2 Covalently crosslinked hydrogels
        1.22.3 Hybrid crosslinked hydrogels
    1.23 Self-healing gels mechanism based on constitutional dynamic chemistry (CDC):
    1.24 Recent development in miscellaneous application fields
        1.24.1 Superabsorbent hybrid hydrogels
        1.24.2 Conductive polymer hydrogels
        1.24.3 Polysaccharide-based natural hydrogels
        1.24.4 Protein-based hydrogels
    1.25 Research objectives
    1.26 Research scope
    1.27 Thesis outline
        1.27.1 Chapter 1
        1.27.2 Chapter 2
        1.27.3 Chapter 3
        1.27.4 Chapter 4
        1.27.5 Chapter 5
        1.27.6 Chapter 6 & 7
Chapter 2 Hydroxyethyl cellulose-based self-healing hydrogels with enhanced mechanicalproperties via metal-ligand bonds interactions
    2.1 Introduction
    2.2 Materials and methods
        2.2.1 Materials
3+ hydrogels">    2.3 Synthesis of HEC/PAA-Fe3+ hydrogels
    2.4 Characterization
    2.5 Mechanical properties
        2.5.1 Tensile test
        2.5.2 Compression test
        2.5.3 Self-Healing efficiency
        2.5.4 Swelling behavior
        2.5.5 FTIR analysis
    2.6 Results and discussion
        2.6.1 Mechanical properties of HEC/PAA-Fe3+ hydrogel
        2.6.2 Compression analysis
        2.6.3 Tensile analysis
        2.6.4 Self-Healing properties
        2.6.5 Macroscopic self-healing test
        2.6.6 Water content and swelling ration
Chapter 3 Enhancing the mechanical properties and self-healing efficiency of hydroxyethylcellulose-based conductive hydrogels via supramolecular interactions
    3.1 Introduction
    3.2 Materials and methods
        3.2.1 Materials
        3.2.2 Preparation of HEC/P(AA-co-AAm)-Fe3+ hydrogels
    3.3 Results and discussion
        3.3.1 FTIR analysis
    3.4 Mechanical properties
        3.4.1 Compression analysis
        3.4.2 Tensile strength analysis
        3.4.3 Self-healing experiment
        3.4.4 Macroscopic self-healing test
        3.4.5 Re-processability/re-shapeability
        3.4.6 Conductivity test
        3.4.7 Structural morphology
        3.4.8 Rheological measurements
Chapter 4 Glycogen-based self-healing hydrogels with flexible, ultra-stretchable and enhanced mechanical properties via sacrificial metal-ligand bond interactions
    4.1 Introduction
    4.2 Materials and methods
        4.2.1 Materials
3+ hydrogels">        4.2.2 Preparation of Gly/PAA-Fe3+ hydrogels
    4.3 Characterization
    4.4 Mechanical properties
        4.4.1 Tensile test
        4.4.2 Compression test
        4.4.3 Self-Healing efficiency
        4.4.4 Growth rate percent
        4.4.5 Swelling behavior
        4.4.6 FTIR
    4.5 Results and discussions
        4.5.1 FTIR analysis
        4.5.2 Stretching and flexible behavior of Gly/PAA-Fe3+ hydrogels
        4.5.3 Mechanical properties via tensile testing
        4.5.4 The compression analysis
        4.5.5 Self-healing studies
        4.5.6 Self-healing mechanism
        4.5.7 Reshapeability/re-processability
        4.5.8 Microscopic self-healing test
        4.5.9 Water content and swelling ratio
Chapter 5 Facile and Cost-Effective Synthesis of Glycogen-Based Hydrogels with ExtremelyFlexible Excellent Self-Healing and Tunable Mechanical Properties
    5.1 Introduction
    5.2 Materials and Methods
        5.2.1 Materials
3+ Hydrogels">        5.2.2 Preparation of Gly-PVA/PAA-Fe3+ Hydrogels
    5.3 Characterization
    5.4 Measurement of the Swelling property
        5.4.1 Mechanical tests
        5.4.2 Self-healing efficiency
        5.4.3 Growth Rate Percent
        5.4.4 FTIR analysis
    5.5 Results and Discussion
        5.5.1 FTIR analysis
        5.5.2 Stretchability and antifatigue characteristics
        5.5.3 Tensile Strength
        5.5.4 Self-Healing Experiments
        5.5.5 Growth Rate Percent
        5.5.6 Macroscopic self-healing experiment
        5.5.7 Conductivity test
        5.5.8 Water content
    5.6 Comparative analysis (mechanical strength & self-healing efficiency)
6 Conclusion
7 References
8 List of Publication



本文編號:2895325

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/huaxue/2895325.html


Copyright(c)文論論文網All Rights Reserved | 網站地圖 |

版權申明:資料由用戶634e0***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com