天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 化學(xué)論文 >

草酸二甲酯催化加氫硅酸銅催化劑的研究

發(fā)布時(shí)間:2018-11-26 10:14
【摘要】:乙二醇作為一種重要的化學(xué)工業(yè)原料,被廣泛的用于聚酯等行業(yè)的生產(chǎn)。傳統(tǒng)的生產(chǎn)方式以石油為原料來(lái)生產(chǎn),隨著石油資源的日益匱乏,“煤制乙二醇”技術(shù)逐漸受到研究者的重視。該技術(shù)是指從煤氣出發(fā),經(jīng)草酸酯選擇性加氫制備乙二醇的技術(shù)。其中的關(guān)鍵步驟是草酸酯加氫制乙二醇。目前的銅基催化劑還未能滿(mǎn)足工業(yè)化需求,且存在催化活性與穩(wěn)定性問(wèn)題。盡管?chē)?guó)內(nèi)外的研究學(xué)者對(duì)此課題進(jìn)行了大量研究,并提出了不同的關(guān)于銅基催化劑活性中心的理論(Cu0或Cu+或Cu0-Cu+協(xié)同),雖然存在分歧,但可以肯定的是,探索控制催化劑表面物種的組成、價(jià)態(tài)分布的方法是開(kāi)發(fā)高性能草酸酯加氫催化劑的根本途徑。本文采用共沉淀法制備硅酸銅催化劑,研究了沉淀過(guò)程中活性組分與載體之間的相互作用,并考察了相應(yīng)可變參數(shù)對(duì)催化劑催化性能的影響,優(yōu)化了制備工藝。此外,為解決催化劑在高溫條件下易燒結(jié)失活,因而添加了助劑鋅以提高催化劑的熱穩(wěn)定性。研究結(jié)果如下:(1)在采用沉淀法制備硅酸銅催化劑的過(guò)程中,沉淀方式對(duì)銅物種的顆粒大小及在載體上的分散度有較大的影響。硝酸銅滴入硅酸按沉淀得到的催化劑性能優(yōu)于硅酸鈉滴入硝酸銅沉淀制得催化劑,即適宜的沉淀方式制得的催化劑活性物種分散度好,活性中心多。在沉淀過(guò)程中,沉淀速率對(duì)反應(yīng)的轉(zhuǎn)化率稍有影響而對(duì)目的產(chǎn)物的選擇性影響不大。隨沉淀時(shí)間的增加即沉淀速率的減慢,草酸二甲酯的轉(zhuǎn)化率稍有提高。銅硅比對(duì)催化劑的催化性能影響較大,銅硅比過(guò)低,催化劑活性位少,催化活性弱;銅硅比過(guò)高則活性物種易相互聚集,顆粒長(zhǎng)大,分布不均從而催化劑活性也會(huì)降低。實(shí)驗(yàn)表明較優(yōu)的銅硅比為0.85:1,此時(shí)DMO轉(zhuǎn)化率為90.5%,EG選擇性為82.7%。(2)在進(jìn)行鋅改性硅酸銅催化劑研究過(guò)程中,鋅元素的引入方式對(duì)催化劑有不同的影響。實(shí)驗(yàn)表明銅組分與鋅組分同時(shí)與硅酸鈉沉淀時(shí),銅鋅之間有相互作用,鋅對(duì)銅物種的分散有促進(jìn)作用。且鋅的引入量對(duì)催化劑的性能影響較大,鋅引入量少時(shí)無(wú)法起到明顯效果,而引入量過(guò)多時(shí)則會(huì)包裹活性中心。所以適宜的催化劑組成為Cu0.8Zn0.2/SiO2,此時(shí)催化劑轉(zhuǎn)化率為99.5%,選擇性為91.5%皆為較優(yōu)結(jié)果,抗失活性能測(cè)試也顯示轉(zhuǎn)化率為99%,活性較穩(wěn)定。
[Abstract]:As an important raw material in chemical industry, ethylene glycol is widely used in the production of polyester and other industries. The traditional mode of production uses petroleum as raw material to produce. With the increasing shortage of petroleum resources, the technology of making ethylene glycol from coal has been paid more and more attention by researchers. This technology refers to the selective hydrogenation of oxalate to produce ethylene glycol from gas. The key step is the hydrogenation of oxalate to ethylene glycol. The current copper-based catalysts have not been able to meet the industrial needs, and there are problems of catalytic activity and stability. Although researchers at home and abroad have done a lot of research on this subject and put forward different theories about the active centers of copper-based catalysts (Cu0 or Cu or Cu0-Cu collaboration), although there are differences, it is certain that, The method of controlling species composition and valence distribution on the surface of catalyst is the fundamental way to develop high performance oxalate hydrogenation catalyst. In this paper, coprecipitation method was used to prepare copper silicate catalyst. The interaction between active component and carrier during precipitation was studied. The effect of variable parameters on the catalytic performance of the catalyst was investigated and the preparation process was optimized. In addition, in order to solve the problem that the catalyst is easy to be deactivated by sintering at high temperature, the additive zinc is added to improve the thermal stability of the catalyst. The results are as follows: (1) in the process of preparing copper silicate catalyst by precipitation method, the precipitation mode has a great influence on the particle size of copper species and the dispersion on the carrier. The catalytic properties of the catalyst prepared by precipitation of copper nitrate drop with silicic acid are better than that of the catalyst prepared by the precipitation of copper nitrate with sodium silicate, that is, the catalyst prepared by the appropriate precipitation method has a good dispersion of active species and more active centers. In the precipitation process, the precipitation rate had a slight effect on the conversion of the reaction, but had little effect on the selectivity of the target product. The conversion rate of dimethyl oxalate increased slightly with the increase of precipitation time. The ratio of copper to silicon has a great influence on the catalytic performance of the catalyst, the ratio of copper to silicon is too low, the activity of the catalyst is less and the catalytic activity is weak; if the ratio of copper to silicon is too high, the active species tend to aggregate mutually, the particles grow up and the distribution is uneven, thus the activity of the catalyst will also decrease. The experimental results show that the optimum copper-silicon ratio is 0.85: 1, and the DMO conversion is 90.5 and EG selectivity is 82.7%. (2) in the study of zinc modified copper silicate catalyst, The method of introducing zinc has different influence on the catalyst. The results show that when copper and zinc are precipitated with sodium silicate at the same time, there is interaction between copper and zinc, and zinc can promote the dispersion of copper species. The effect of zinc content on the performance of the catalyst is great. When the amount of zinc is low, the effect of the catalyst is not obvious, but when the amount of zinc is too much, the active center will be wrapped. Therefore, the suitable catalyst composition is Cu0.8Zn0.2/SiO2, the conversion of the catalyst is 99.5 and the selectivity of 91.5% is the best result. The deactivation resistance test also shows that the conversion is 99%, and the activity is relatively stable.
【學(xué)位授予單位】:合肥工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類(lèi)號(hào)】:TQ223.162;O643.36

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 韓素芬,瞿晚星;銅催化劑中雜質(zhì)元素測(cè)定方法的建立[J];有機(jī)硅材料;2004年05期

2 ;丙烯腈催化水合制丙烯酰胺骨架銅催化劑研制報(bào)告[J];勝利石油化工;1977年02期

3 金蘭惠;;制備硅載體銅催化劑用于糠醛氫化[J];林產(chǎn)化工通訊;1989年04期

4 李克順;;年產(chǎn)100噸銅催化劑生產(chǎn)裝置建成投產(chǎn)[J];化工新型材料;1991年12期

5 京山;;凈化汽車(chē)廢氣的鉻和銅催化劑正在研制[J];精細(xì)與專(zhuān)用化學(xué)品;1992年03期

6 陳守堂;;硝基苯加氫改性銅催化劑通過(guò)技術(shù)鑒定[J];精細(xì)與專(zhuān)用化學(xué)品;1993年11期

7 ;硝基苯流化床改性銅催化劑及工業(yè)推廣應(yīng)用通過(guò)鑒定[J];吉化科技;1993年01期

8 鄒家禹;用于甲基氯烷合成的銅催化劑的制備及評(píng)價(jià)[J];有機(jī)硅材料及應(yīng)用;1996年04期

9 田申;從有機(jī)硅工廠廢渣中回收銅[J];化學(xué)教育;1984年06期

10 曾小君,楊高文,徐肖邢,楊剛;高效耐氮脫氫骨架銅催化劑的制備及吸附量熱研究[J];常熟高專(zhuān)學(xué)報(bào);2000年04期

相關(guān)會(huì)議論文 前9條

1 吳貴升;王路存;劉永梅;曹勇;戴維林;賀鶴勇;范康年;;銅催化劑表面氧物種在甲醇水蒸氣重整過(guò)程中作用機(jī)制研究[A];第十三屆全國(guó)催化學(xué)術(shù)會(huì)議論文集[C];2006年

2 于雪;羅家還;王振旅;張文祥;;有機(jī)胺配合的銅催化劑及其對(duì)乙醇脫氫合成乙酸乙酯的催化性能[A];第十四屆全國(guó)青年催化學(xué)術(shù)會(huì)議會(huì)議論文集[C];2013年

3 楊綠娟;朱文明;張慶紅;王野;;釩修飾的銅催化劑上的丙烯環(huán)氧化反應(yīng)[A];第十一屆全國(guó)青年催化學(xué)術(shù)會(huì)議論文集(下)[C];2007年

4 屈孝銘;李廷義;謝觀雷;毛金成;;鐵/銅催化劑體系用于雙C-O(S)反應(yīng)的研究[A];第十六屆全國(guó)金屬有機(jī)化學(xué)學(xué)術(shù)討論會(huì)論文集[C];2010年

5 羅發(fā)亮;張小玲;宋軍超;馬清祥;趙天生;杜彥忠;;H_2O_2-H_2SO_4改性AC載體及對(duì)催化合成DMC活性的影響[A];第十三屆全國(guó)催化學(xué)術(shù)會(huì)議論文集[C];2006年

6 吳貴升;毛東森;盧冠忠;;ZrO_2和La_2O_3對(duì)銅催化劑甲醇水蒸氣重整反應(yīng)性能的影響?[A];第五屆全國(guó)環(huán)境催化與環(huán)境材料學(xué)術(shù)會(huì)議論文集[C];2007年

7 東宇;馬淳安;宋慶寶;;咪唑基查爾酮的合成[A];中國(guó)化學(xué)會(huì)第二十五屆學(xué)術(shù)年會(huì)論文摘要集(上冊(cè))[C];2006年

8 孫傳智;高飛;齊蕾;于武江;萬(wàn)海勤;董林;陳懿;;少量ZrO_2摻雜銳鈦型TiO_2負(fù)載氧化銅催化劑在NO+CO中的反應(yīng)性能研究[A];第六屆全國(guó)環(huán)境催化與環(huán)境材料學(xué)術(shù)會(huì)議論文集[C];2009年

9 徐翠蓮;王敏燦;王曉丹;王建海;;手性二茂鐵基膦-銅催化劑在催化二乙基鋅對(duì)β-芳基硝基烯烴的不對(duì)稱(chēng)加成反應(yīng)中的應(yīng)用[A];第七屆全國(guó)磷化學(xué)化工暨第四屆海峽化學(xué)生物學(xué)、生物技術(shù)與醫(yī)藥發(fā)展討論會(huì)論文集[C];2006年

相關(guān)碩士學(xué)位論文 前10條

1 王霞;介孔炭材料負(fù)載銅催化劑甲醇氧化羰基化性能研究[D];太原理工大學(xué);2016年

2 方志強(qiáng);介孔MCM-41負(fù)載銅配合物催化劑在醇氧化與碳—雜鍵形成反應(yīng)中的應(yīng)用[D];廣東藥科大學(xué);2016年

3 丁丁;草酸二甲酯催化加氫硅酸銅催化劑的研究[D];合肥工業(yè)大學(xué);2016年

4 張俊茹;廢棄含銅催化劑資源化研究[D];西南科技大學(xué);2015年

5 高林娜;膠體銅催化劑催化特征的研究及量化計(jì)算[D];中國(guó)海洋大學(xué);2005年

6 阮桂玉;銅催化劑活化C H鍵反應(yīng)機(jī)理的理論研究[D];蘇州大學(xué);2015年

7 朱瓊芳;活性炭載銅催化劑的制備與催化性能研究[D];太原理工大學(xué);2011年

8 張巖;碳納米管填充氧化銅催化劑的制備及性能研究[D];哈爾濱工業(yè)大學(xué);2008年

9 王津津;新型希夫堿—銅催化劑的開(kāi)發(fā)及催化甲基丙烯酸甲酯聚合的研究[D];西北大學(xué);2012年

10 李治國(guó);硫酸處理HZSM-5分子篩負(fù)載銅催化劑選擇性催化還原一氧化氮的研究[D];汕頭大學(xué);2006年

,

本文編號(hào):2358272

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/huaxue/2358272.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶(hù)f6f16***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com