黃桃碰傷和可溶性固形物高光譜成像無損檢測(cè)
[Abstract]:The surface damage and soluble solids were detected at the same time when the yellow peach was classified on line. Damage and soluble solids are important indexes to evaluate the quality of yellow peach. Hyperspectral imaging was used to detect the damage and soluble solids of yellow peach simultaneously. Using principal component analysis (PCA), the best PC (principal component) image is obtained by principal component analysis (PCA), and the optimal characteristic wavelength (550 and 720nm) is determined according to the contribution rate of each wavelength in the PC image and combined with binarization. Image mask, threshold segmentation and related image processing techniques are used to qualitatively identify the best spectral images. At the same time, the partial least square quantitative regression model was established to predict the SSC (soluble solid content) content of normal samples. Based on hyperspectral imaging technology, the simultaneous detection of collision and soluble solids in yellow peach was realized. The resolution of soluble solids was 79.2%. The experimental results show that the hyperspectral imaging technique can be used to simultaneously detect the collision and soluble solids of yellow peach. This study can provide theoretical basis and reference for on-line sorting.
【作者單位】: 華東交通大學(xué)機(jī)電與車輛工程學(xué)院 光機(jī)電技術(shù)及應(yīng)用研究所;
【基金】:國(guó)家“十二五”(863)計(jì)劃項(xiàng)目(SS2012AA101306) 江西省優(yōu)勢(shì)科技創(chuàng)新團(tuán)隊(duì)建設(shè)計(jì)劃項(xiàng)目(20153BCB24002) 南方山地果園智能化管理技術(shù)與裝備協(xié)同創(chuàng)新中心(贛教高字[2014]60號(hào)) 江西省科技支撐計(jì)劃(20121BBF60054)資助
【分類號(hào)】:O657.3;TS255.2
【相似文獻(xiàn)】
相關(guān)期刊論文 前7條
1 張令標(biāo);何建國(guó);王松磊;劉貴珊;賀曉光;羅瑞明;;高光譜成像技術(shù)在肉品無損檢測(cè)中的應(yīng)用及進(jìn)展[J];河南工業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版);2014年01期
2 曲佳歡;馬驥;孫大文;吳迪;曾新安;;高光譜成像在食品質(zhì)量評(píng)估方面的研究進(jìn)展與應(yīng)用(一)[J];肉類研究;2012年04期
3 張?bào)憷?劉飛;聶鵬程;何勇;鮑一丹;;高光譜成像技術(shù)的油菜葉片氮含量及分布快速檢測(cè)[J];光譜學(xué)與光譜分析;2014年09期
4 張令標(biāo);何建國(guó);劉貴珊;王松磊;賀曉光;王偉;;基于可見/近紅外高光譜成像技術(shù)的番茄表面農(nóng)藥殘留無損檢測(cè)[J];食品與機(jī)械;2014年01期
5 王家云;王松磊;賀曉光;何建國(guó);吳龍國(guó);劉貴珊;;基于NIR高光譜成像技術(shù)的灘羊肉內(nèi)部品質(zhì)無損檢測(cè)[J];現(xiàn)代食品科技;2014年06期
6 鄒小波;李志華;石吉勇;黃曉瑋;;高光譜成像技術(shù)檢測(cè)肴肉新鮮度[J];食品科學(xué);2014年08期
7 徐爽;何建國(guó);賀曉光;易東;劉貴珊;王松磊;;基于高光譜技術(shù)的長(zhǎng)棗內(nèi)外品質(zhì)同時(shí)檢測(cè)[J];光電子.激光;2013年10期
相關(guān)博士學(xué)位論文 前1條
1 朱逢樂;基于光譜和高光譜成像技術(shù)的海水魚品質(zhì)快速無損檢測(cè)[D];浙江大學(xué);2014年
相關(guān)碩士學(xué)位論文 前3條
1 熊振杰;基于高光譜成像技術(shù)的雞肉品質(zhì)快速無損檢測(cè)[D];華南理工大學(xué);2015年
2 鐘謝偉;漫反射譜分析獲取皮膚組織生理特性參數(shù)[D];華中科技大學(xué);2015年
3 思振華;基于高光譜圖像技術(shù)的羊肉表面污染及病變快速檢測(cè)方法研究[D];寧夏大學(xué);2014年
,本文編號(hào):2342935
本文鏈接:http://sikaile.net/kejilunwen/huaxue/2342935.html