反蛋白石型氧化鋯光子晶體結(jié)構(gòu)色的制備及呈色因素分析
[Abstract]:Due to its high brightness and saturation, never fading, iridescent effect, good adhesion, scratch resistance and environmental friendliness, structural color has attracted more and more attention from researchers at home and abroad. High saturation superstructure coloring agents have a wide application prospect, which will permeate and replace the existing color agents in the fields of display technology, anti-counterfeiting, detection, aerospace and the application of new high-tech products, etc. It has high academic research value and application potential. The ratio of dielectric constant in photonic crystals to a certain threshold is of great benefit for the generation of complete photonic bandgap. The generation of complete photonic band gap is beneficial to the regulation of visible light and the enhancement of structure color saturation and brightness under natural light. This threshold is about 4 in opal photonic crystal materials, but it is far below 4 in artificial opal photonic crystal materials. Due to the degeneracy caused by spherical symmetry of lattice points in face-centered cubic structures, it is difficult for opal photonic crystals to have complete photonic bandgap, which limits their application in structural coloring agents. The inverse opal photonic crystals have the potential to be used as structural coloring agents. The aim of this thesis is to prepare inverse opal type zirconia photonic crystal and analyze its color phenomenon. Polystyrene (Polystyrene, PS) colloidal microspheres were prepared first, then PS microspheres were arranged by colloid self-assembly to form colloidal crystals, and the colloidal crystals were used as templates. After in-situ curing and drying of zirconia precursor with high dielectric constant, the template was calcined to form a zirconia-air opal photonic crystal with high dielectric ratio. The infrared spectrum, XRD,SEM, UV-Vis spectrum and other analytical instruments were used as the characterization means, and the color effect was captured by digital camera. The main work of this paper is to analyze the surface morphology and particle size of PS submicron microspheres, the preparation process of PS colloidal crystal template and the preparation process of inverse opal zirconia photonic crystal materials. The details include the following aspects: PS submicron microspheres were synthesized by soap-free emulsion polymerization. The distribution of particle size and the functional group information in infrared spectrum were analyzed. The amount of potassium bicarbonate and sodium styrenesulfonate were discussed. The effects of the amount of initiator and reaction time on the particle size and surface morphology of PS microspheres were investigated. Finally, the mechanism of PS pelletizing was analyzed. The effects of concentration, temperature, emulsion height and assembly area of PS microspheres on the morphology and color effect of PS colloidal template were studied and analyzed by using the evaporative self-assembly technique. The primary and secondary factors and the level of the above factors were determined by orthogonal test. The inverse opal type zirconia photonic crystal was prepared by colloidal template method with PS colloidal crystal as template. The concentration of precursor, the mass ratio of template to precursor, and the times of impregnation were studied. The effects of calcination temperature and holding time on the phase and micromorphology of zirconia were studied. The main and secondary factors and the level of the above factors were determined by orthogonal test. The effects of different calcination atmosphere on the microscopic morphology and macroscopic color of inverse opal type zirconia photonic crystal were studied. The reason why the structure color saturation of calcined samples in the reduction atmosphere was better under the irradiation of natural light was inferred and analyzed. It is proved that the inverse opal type zirconia photonic crystal prepared by PS gel crystal template method has great potential as a new structural color agent.
【學(xué)位授予單位】:陜西科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:O734
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李文勝;張琴;黃海銘;付艷華;;基于光子晶體結(jié)構(gòu)的雙紅外隱身涂層設(shè)計(jì)[J];紅外與激光工程;2012年10期
2 孫鑒;王明吉;李玉洋;;二維五筒型光子晶體結(jié)構(gòu)的提出[J];光電子技術(shù);2011年02期
3 馮尚申,沈林放,何賽靈,肖三水;高頻區(qū)具有大帶隙的二維像素型光子晶體結(jié)構(gòu)[J];光學(xué)學(xué)報(bào);2003年09期
4 王衛(wèi)杰;符策基;譚文長(zhǎng);;微光柵對(duì)SiC/光子晶體結(jié)構(gòu)熱輻射特性的調(diào)控[J];工程熱物理學(xué)報(bào);2012年07期
5 蒙成舉;韋吉爵;韋蘭香;;實(shí)現(xiàn)雙系多通道光濾波功能的雙周期光子晶體結(jié)構(gòu)[J];河池學(xué)院學(xué)報(bào);2013年05期
6 劉佩;張曉松;李夢(mèng)真;陳義鵬;李嵐;;PbS量子點(diǎn)電致發(fā)光器件中的光子晶體結(jié)構(gòu)設(shè)計(jì)[J];紅外與激光工程;2012年10期
7 萬(wàn)勇;李長(zhǎng)紅;云茂金;郭月;楊陽(yáng);崔瑩;;采用漸變圓弓形散射元實(shí)現(xiàn)光子晶體結(jié)構(gòu)慢光效應(yīng)[J];光學(xué)學(xué)報(bào);2013年10期
8 黃愛(ài)琴;鄭繼紅;徐邦聯(lián);楊毅彪;莊松林;;大帶隙二維三角格子光子晶體結(jié)構(gòu)參數(shù)的優(yōu)化設(shè)計(jì)[J];光學(xué)技術(shù);2011年03期
9 高凈節(jié);孫曉紅;;十重準(zhǔn)晶光子晶體結(jié)構(gòu)帶隙特性的研究[J];量子電子學(xué)報(bào);2013年02期
10 劉名揚(yáng);賀珍妮;張向東;;一維正負(fù)折射率光子晶體結(jié)構(gòu)禁帶及傳播特性[J];四川大學(xué)學(xué)報(bào)(自然科學(xué)版);2013年04期
相關(guān)會(huì)議論文 前4條
1 陶呈安;黃婧;徐丹;吳廣龍;李小剛;崔杰鋮;江寅;李廣濤;;基于光子晶體結(jié)構(gòu)的功能化學(xué)體系的構(gòu)建[A];中國(guó)化學(xué)會(huì)第27屆學(xué)術(shù)年會(huì)第16分會(huì)場(chǎng)摘要集[C];2010年
2 徐中南;劉麗;周曉霞;;邊界元方法計(jì)算光子晶體結(jié)構(gòu)的研究[A];2004全國(guó)光學(xué)與光電子學(xué)學(xué)術(shù)研討會(huì)、2005全國(guó)光學(xué)與光電子學(xué)學(xué)術(shù)研討會(huì)、廣西光學(xué)學(xué)會(huì)成立20周年年會(huì)論文集[C];2005年
3 于冰;叢海林;;利用原子力顯微鏡研究光子晶體結(jié)構(gòu)形態(tài)[A];中國(guó)化學(xué)會(huì)第27屆學(xué)術(shù)年會(huì)第16分會(huì)場(chǎng)摘要集[C];2010年
4 許興勝;馬勇;魯琳;陳弘達(dá);;實(shí)用化光子晶體結(jié)構(gòu)白光LED研究[A];光電技術(shù)與系統(tǒng)文選——中國(guó)光學(xué)學(xué)會(huì)光電技術(shù)專業(yè)委員會(huì)成立二十周年暨第十一屆全國(guó)光電技術(shù)與系統(tǒng)學(xué)術(shù)會(huì)議論文集[C];2005年
相關(guān)博士學(xué)位論文 前3條
1 徐丹;基于膠體光子晶體結(jié)構(gòu)功能體系的構(gòu)建[D];清華大學(xué);2012年
2 劉秀紅;離子注入釩酸釔光波導(dǎo)及其平板光子晶體結(jié)構(gòu)的研究[D];山東大學(xué);2012年
3 李小麗;納米壓印技術(shù)制作光子晶體結(jié)構(gòu)及其應(yīng)用研究[D];上海交通大學(xué);2009年
相關(guān)碩士學(xué)位論文 前10條
1 蓋言成;蛋白石光子晶體結(jié)構(gòu)色薄膜的研究[D];陜西科技大學(xué);2015年
2 吳玉江;SiO_2膠體微球的制備及其在紡織品上自組裝結(jié)構(gòu)生色中的應(yīng)用[D];浙江理工大學(xué);2016年
3 茍紫娟;聚苯乙烯三維光子晶體結(jié)構(gòu)色薄膜的研究[D];陜西科技大學(xué);2016年
4 宮在磊;反蛋白石型氧化鋯光子晶體結(jié)構(gòu)色的制備及呈色因素分析[D];陜西科技大學(xué);2016年
5 黃X;單軸應(yīng)力對(duì)光子晶體結(jié)構(gòu)透射特性的影響[D];中北大學(xué);2011年
6 黃婧;具有光子晶體結(jié)構(gòu)的離子液體聚合物的制備及應(yīng)用[D];清華大學(xué);2010年
7 趙楊;多工況微結(jié)構(gòu)熱控機(jī)理研究[D];哈爾濱工業(yè)大學(xué);2014年
8 武建加;可實(shí)現(xiàn)寬帶光隔離的一維磁光子晶體結(jié)構(gòu)研究[D];太原理工大學(xué);2014年
9 劉曉;一維廣義Fibonacci序列光子晶體結(jié)構(gòu)的光學(xué)傳輸特性研究[D];寧波大學(xué);2011年
10 王晶晶;大禁帶光子晶體結(jié)構(gòu)設(shè)計(jì)及其應(yīng)用[D];深圳大學(xué);2015年
,本文編號(hào):2299033
本文鏈接:http://sikaile.net/kejilunwen/huaxue/2299033.html