PTA氧化過程中4-CBA含量的軟測(cè)量建模研究
[Abstract]:The PTA oxidation process is an important chemical reaction process in petrochemical production. The reaction product is an important chemical raw material for the production of polyester products. 4-CBA is the main by-product in the oxidation process. The reaction conditions of the PTA oxidation process are harsh. The reaction mechanism and reaction process are complex, and the soft sensing technique is used to predict the reaction process in real time. Soft sensing technology uses some measurable variables to predict unmeasurable variables. In this paper, the oxidation process of PTA is studied. Taking the content of 4-CBA as the research object, the soft sensing model is established by AdaBoost algorithm. The AdaBoost algorithm is a combination algorithm, which combines a group of weak learning devices with different training into strong learning devices. In this paper, BP neural network and support vector machine are selected as weak learning devices. In order to solve the problem of training weakening in AdaBoost algorithm, the method of double threshold is used to update the weight of samples, to reduce the influence of the samples with large errors on the weak learner, and the method of roulette is used to resample the samples. The feasibility of the improved algorithm is proved by nonlinear function fitting. Aiming at the soft sensing model of 4-CBA content in the process of PTA oxidation, BP neural network and support vector machine are used as weak learning devices, and the improved AdaBoost algorithm is used as strong learning device to establish soft sensor model. The 4-CBA content is predicted by MATLAB training simulation. And compared with the single weak learner model and the unimproved AdaBoost algorithm, it is proved that the improved soft sensor model based on the improved AdaBoost algorithm is more accurate in these models.
【學(xué)位授予單位】:南京郵電大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP18;O633.14
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉慶華;丁文濤;涂娟娟;方守恩;;優(yōu)化BP_AdaBoost算法及其交通事件檢測(cè)[J];同濟(jì)大學(xué)學(xué)報(bào)(自然科學(xué)版);2015年12期
2 袁雙;呂賜興;;基于PCA改進(jìn)的快速Adaboost算法研究[J];科學(xué)技術(shù)與工程;2015年29期
3 查翔;倪世宏;張鵬;;關(guān)于AdaBoost.RT集成算法時(shí)間序列預(yù)測(cè)研究[J];計(jì)算機(jī)仿真;2015年09期
4 曹瑩;苗啟廣;劉家辰;高琳;;AdaBoost算法研究進(jìn)展與展望[J];自動(dòng)化學(xué)報(bào);2013年06期
5 胡國勝;;基于加權(quán)支持向量機(jī)與AdaBoost集成的預(yù)測(cè)模型研究[J];計(jì)算機(jī)應(yīng)用與軟件;2012年12期
6 金斌;高計(jì)勇;;CL語言在4-CBA軟測(cè)量中的應(yīng)用[J];石油化工自動(dòng)化;2012年05期
7 姚科田;邵之江;陳曦;紀(jì)彭;蔣鵬飛;;基于數(shù)據(jù)驅(qū)動(dòng)技術(shù)和工藝機(jī)理模型的PTA生產(chǎn)過程軟測(cè)量建模方法[J];計(jì)算機(jī)與應(yīng)用化學(xué);2010年10期
8 王孝紅;劉文光;于宏亮;;工業(yè)過程軟測(cè)量研究[J];濟(jì)南大學(xué)學(xué)報(bào)(自然科學(xué)版);2009年01期
9 王立;朱學(xué)峰;;一種基于Boosting的在線回歸算法[J];計(jì)算機(jī)測(cè)量與控制;2008年06期
10 董輝;傅鶴林;冷伍明;龍萬學(xué);;Boosting集成支持向量回歸機(jī)的滑坡位移預(yù)測(cè)[J];湖南大學(xué)學(xué)報(bào)(自然科學(xué)版);2007年09期
相關(guān)會(huì)議論文 前1條
1 李雅芹;楊慧中;;基于改進(jìn)的Adaboost.RT模糊支持向量回歸機(jī)集成算法[A];2009年中國智能自動(dòng)化會(huì)議論文集(第二分冊(cè))[C];2009年
相關(guān)博士學(xué)位論文 前1條
1 牟盛靜;石化工業(yè)過程建模與優(yōu)化若干問題研究[D];浙江大學(xué);2004年
相關(guān)碩士學(xué)位論文 前3條
1 張茂強(qiáng);精對(duì)苯二甲酸生產(chǎn)技術(shù)工藝研究[D];山東大學(xué);2007年
2 邵可可;PTA生產(chǎn)工藝的全流程模擬[D];浙江大學(xué);2007年
3 劉潔;對(duì)苯二甲酸生產(chǎn)全流程模擬[D];天津大學(xué);2007年
,本文編號(hào):2279939
本文鏈接:http://sikaile.net/kejilunwen/huaxue/2279939.html