可見-近紅外光譜的小麥硬度預(yù)測模型預(yù)處理方法的研究
[Abstract]:Hardness is an important quality parameter to evaluate wheat quality. It is very important to study the classification, end-use and grain composition of wheat. In order to detect wheat hardness quickly and accurately, a radial basis function (RBF) (RBF) neural network model was established to detect the hardness of unknown samples on the basis of detailed analysis of infrared light absorption characteristics of wheat grain components. The influence of different spectral signal preprocessing methods on the prediction accuracy of the model is analyzed. 111 wheat samples were collected from the main wheat producing areas, the visible near infrared spectra were obtained by scanning the samples, the abnormal spectra were judged and eliminated by Markov distance, 84 samples were obtained by the optimized SPXY. A continuous projection algorithm (SPA) is used to extract 47 characteristic spectra from 262 spectral wave points, and the first derivative, second derivative and standard normal variable transform (SNV) and their different combinations are used to preprocess the spectrum, respectively. Verify the interaction between different pretreatment methods and find the best combination of preprocessing methods. The pre-processed characteristic spectral data of the calibration set is used as the input of the RBF model, and the hardness of the corresponding sample measured by the hardness index method is used as the output to establish the model. The prediction results show that when the spectral data are processed by SNV and SPA, the effect of the model is optimal. The predictive standard deviation (SEP) and the relative analysis error (RPD) were 0.90 and 3.11, respectively, which indicated that the RBF neural network model based on the visible and near infrared spectra could accurately predict the hardness of wheat. Compared with the traditional testing method, it has the advantages of convenience, rapidity and nondestructive, which provides a more convenient and practical method for wheat hardness detection.
【作者單位】: 黑龍江省電子工程高校重點實驗室黑龍江大學(xué);農(nóng)業(yè)部谷物及制品質(zhì)量監(jiān)督檢驗測試中心(哈爾濱);
【基金】:哈爾濱市青年科技創(chuàng)新人才研究專項基金項目(2012RFQXN119) 國家現(xiàn)代農(nóng)業(yè)技術(shù)體系任務(wù)書項目(CARS-3-1-6)資助
【分類號】:O657.33;TS210.7
【相似文獻】
相關(guān)期刊論文 前10條
1 莫曉嵩;黃偉;陳建偉;;新國標小麥硬度指數(shù)的測試[J];面粉通訊;2008年04期
2 曉雯;“小麥硬度測定指標的研究開發(fā)及設(shè)備開發(fā)”課題通過驗收[J];糧食與食品工業(yè);2003年03期
3 吳存榮;唐道五;虞泓;唐懷建;;小麥硬度指數(shù)測定技術(shù)研究進展[J];糧食與飼料工業(yè);2008年01期
4 孫輝;吳存榮;楊中建;姜薇莉;唐懷建;周展明;;我國小麥硬度質(zhì)量狀況和硬度分類的研究[J];中國糧油學(xué)報;2008年03期
5 王小萍;呂秀鑫;;小麥硬度指數(shù)法的應(yīng)用與分析[J];面粉通訊;2008年04期
6 謝月昆;;小麥硬度指數(shù)測定儀使用中的常見問題與對策[J];糧油倉儲科技通訊;2010年01期
7 胡德新;;小麥硬度指數(shù)儀比對實驗報告[J];糧油倉儲科技通訊;2010年02期
8 郭剛,,周革;小麥硬度及其測定[J];中國糧油學(xué)報;1996年04期
9 趙文華;;小麥硬度及與制品品質(zhì)的關(guān)系[J];糧食加工;2009年04期
10 郭維榮;;水分對小麥硬度指數(shù)的影響[J];現(xiàn)代面粉工業(yè);2009年06期
相關(guān)重要報紙文章 前2條
1 張育勇 張玉玲;小麥硬度形成規(guī)律被發(fā)現(xiàn)[N];江蘇農(nóng)業(yè)科技報;2004年
2 記者 李劍軍邋通訊員 涂玉國 劉明鋒;襄樊夏糧收購?fù)癸@人性化服務(wù)[N];湖北日報;2008年
相關(guān)碩士學(xué)位論文 前6條
1 王薇;小麥硬度聲學(xué)測定方法的優(yōu)化研究[D];河南工業(yè)大學(xué);2014年
2 丁茂予;小麥硬度等位基因變異的鑒定和篩選[D];安徽農(nóng)業(yè)大學(xué);2005年
3 李齊超;小麥硬度聲學(xué)測定方法的研究[D];河南工業(yè)大學(xué);2011年
4 張慶祝;小麥硬度主效基因pinA和pinB植物高效表達載體的構(gòu)建[D];河北師范大學(xué);2003年
5 李旭東;基于DSP+ARM的小麥硬度檢測平臺研究與開發(fā)[D];河南工業(yè)大學(xué);2011年
6 李善富;小麥硬度基因遺傳多樣性的SSR分子標記研究[D];青海師范大學(xué);2014年
本文編號:2259203
本文鏈接:http://sikaile.net/kejilunwen/huaxue/2259203.html