基于稀土5d-4f寬帶發(fā)光的熒光應(yīng)力傳感技術(shù)
[Abstract]:At present, the main methods of fluorescence stress sensing include Cr~ (3) fluorescence pressure spectroscopy, stress luminescence and rare earth fluorescence pressure spectroscopy. The rich fluorescence lines of rare earth elements provide more sensitive material options for fluorescence spectroscopy. In this paper, the three stress sensing techniques are summarized and compared, and the unique advantages of rare earth fluorescence pressure spectroscopy are pointed out. Stress is usually characterized by spectral peak shift in force sensitive spectroscopy, but it is difficult to accurately detect the peak position of spectrum band which is used for monitoring signal of stress sensing in general. In the research of our group, a new sensing signal-emission spectral band has been designed for the wavelength of center of gravity and the ratio of fluorescence intensity. They all change monotonously with the change of compressive stress. In this paper, the stress sensing characteristics of two kinds of broadband fluorescent materials are studied. With the new sensing signal, the shift energy of the fluorescence band can be detected more accurately, and the pressure spectrum number is about 3 orders of magnitude larger than that of the ruby spectrum. In the experiment, the 405nm excitation light source is used to set up the reflective measuring light path, and a series of steady state emission spectra are recorded by using the optical fiber spectrometer. After data processing, the sensing equations of each sensing characteristic varying with the stress are given. The sensing performance is briefly analyzed. The results are as follows: (1) YAG:Ce~ (3): the compressive stress results in the blue shift of the spectrum band. The compressive stress range measured in the experiment is 0 ~ 1.59 MPa,. The pressure stress sensing equation of the spectral center of gravity is 位 _ (572.6-0.72) 蟽 _ (0.22) 蟽 ~ (2), and the local curve is approximately linear when the external stress is large. The sensitivity is about 0. 3 nm/MPa,. The sensitivity is 90 times of that of the corresponding phosphors in hydrostatic pressure. The compressive stress sensing equations of (I (570nm / I (510nm) and (I (420nm~570nm / I (570nm~800nm) are 1) FIR=8.4-1.74 蟽 0.54 蟽 2 and 2) I-FIR=0.79 0.03 蟽 -0.0092 蟽 -2.0.5 nm resolution spectrometer and 5.4 nm resolution spectrometer, respectively. The resolution of the spectrometer has no obvious effect on the precision of the stress sensing. The resolution is better than 0.08 MPa. (2) SrSiAlN_3:Eu~ (2): the influence of compressive stress and bending stress on the fluorescence spectrum is measured and analyzed, respectively. The compressive stress: compressive stress leads to the blue shift of spectral band. The compressive stress sensing equations of the spectral center of gravity and the mean wavelength of the spectral band are 1) 位 ~ (1) 625.1-0.16 蟽 and 2) 位 ~ (3) 0.3-0.138 蟽, respectively, in the compressive stress range of 0 ~ 5.83 MPa,. The compressive stress sensing equations of double wavelength ratio (I (632nm) / r I (582nm) and integral intensity ratio (I (628nm~800nm) / r I (240nm~628nm) are 3) FIR=2.097-0.023 蟽 and 4) I-FIR=0.8814-0.0063 蟽, respectively. The resolution is better than 0. 28 MPa.2, bending stress: the compressive stress results in the blue shift of spectral band, the curvature range is 0 ~ (16. 03) m ~ (-1), and the integral intensity ratio-curvature curve is approximately linear (I-FIR=I (178nm~607nm) / I (607nm~1000nm), sensitivity about 0. 0033 m). The spectral band barycenter resolution is not sufficient to detect this small bend. In general, compared with the peak wavelength frequency shift induction force, the method of center of gravity and fluorescence intensity has higher sensitivity, lower requirements for equipment performance, and can be used to measure and distinguish tiny stresses below MPA. In addition, the integral strength ratio method can also be used for sensing bending stress or curvature. These new stress sensing methods can be used for non-contact measurement of surface stress and residual stress of workpiece, and have a good application prospect in mechanical engineering.
【學(xué)位授予單位】:南昌航空大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:O614.33;O657.3
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 毛培德 ,王鳳岐 ,肖紅 ,高棣華;鋯-2和鋯-4合金管中的氫化物取向與管織構(gòu)關(guān)系的初步研究(下)[J];核動(dòng)力工程;1980年02期
2 姜小龍;;定量相分析k值法的幾點(diǎn)討論[J];上海金屬.有色分冊;1983年01期
3 ;用X射線衍射儀測定鋼中殘留奧氏體的含量[J];上海鋼研;1977年01期
4 周雅琴,郭波,曹恩華,宋增福北京大學(xué)物理學(xué)系,周實(shí)武,秦gl,查人俊;中藥抗癌的實(shí)驗(yàn)研究Ⅰ.用熒光探針法研究中藥與DNA的相互作用[J];北京大學(xué)學(xué)報(bào)(自然科學(xué)版);1993年01期
5 李華瑞,陳夢謫;X射線定量相分析直接對(duì)比方法的一個(gè)新的處理方式[J];北京鋼鐵學(xué)院學(xué)報(bào);1981年03期
6 王六定,康沫狂,陳長樂;關(guān)于Daniel—Lipson調(diào)幅波長公式的適用性問題[J];金屬學(xué)報(bào);2000年08期
7 苗偉;陶琨;;不涉及結(jié)構(gòu)的多晶X射線衍射全譜擬合及相關(guān)定量分析方法[J];實(shí)驗(yàn)技術(shù)與管理;2007年10期
8 喬玉泉;X射線法測定殘余奧氏體時(shí)幾種積分強(qiáng)度測量方法[J];兵器材料科學(xué)與工程;1989年02期
9 李華瑞,高佳,臧敏珠,崔新發(fā);少量樣品的X射線定量相分析[J];北京鋼鐵學(xué)院學(xué)報(bào);1982年03期
10 ;[J];;年期
相關(guān)碩士學(xué)位論文 前3條
1 郭韋韋;稀土摻雜釩酸鹽系列單晶制備與性能的研究[D];華中科技大學(xué);2013年
2 李朝;基于稀土5d-4f寬帶發(fā)光的熒光應(yīng)力傳感技術(shù)[D];南昌航空大學(xué);2016年
3 王國耀;基于稀土5d-4f寬帶發(fā)光的熒光溫度傳感技術(shù)[D];南昌航空大學(xué);2016年
,本文編號(hào):2248161
本文鏈接:http://sikaile.net/kejilunwen/huaxue/2248161.html