天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 化學論文 >

超聲法制備納米氣泡及其對電極表面雙電層影響的研究

發(fā)布時間:2018-09-03 07:58
【摘要】:近些年來,界面上的有關問題越來越成為研究者們研究的難點和熱點。在固液界面上存在納米氣泡最初來源于人們研究表面疏水長程引力的作用機制。在經典熱力學理論中,室溫下水中納米氣泡被認為是不能穩(wěn)定存在的。近些年來對疏水表面的深入研究,許多現象都表明固液界面有納米氣泡的存在,納米氣泡的存在已經通過中子衍射技術,原子力顯微鏡等方法得到了證實,最重要的是利用原子力顯微鏡的方法對納米氣泡成像研究,有利地證實了納米氣泡的存在。當前,直接探測固液界面納米氣泡的最有力手段是原子力顯微鏡(AFM)。在用AFM對納米氣泡成像時,通常選用表面較為平整的基底。主要有高序熱解石墨(HOPG),云母,金,聚苯乙烯薄膜等。到目前為止,關于納米氣泡的生成方法已經得到了廣泛的研究,例如醇水替換法,不同溶液替換法,直接滴加法,直接浸漬法,快速加熱法,電化學法等。其中,替換法是近年來研究的最多的一種方法。醇水替換法是一種可高度可重復性,并且可以在不同的基底上生成大量納米氣泡的方法而被廣泛研究。但是,有一些可溶于有機物的基底不能用有機溶劑,并且由于使用有機溶劑,很容易引入雜質。因此,為克服這些缺點,需要找到一些新的納米氣泡的制備方法。超聲法讓我們有了新的思路。我們通過超聲產生納米氣泡和電化學工作站結合,對玻碳電極進行循環(huán)伏安曲線測試,在此實驗中,我們將脫氣電解質溶液和未脫氣電解質溶液分別用于實驗中,對比兩個實驗結果從而來得出納米氣泡的生成。我們還研究了超聲時間對納米氣泡生成的影響,實驗得出,超聲時間越長,雙電層電容在不斷地下降,直到變化平穩(wěn),從而根據推導得出納米氣泡隨著超聲時間的增加對電極的覆蓋面積越來越大。超聲次數的影響,隨著超聲次數的增加,雙電層電容也在不斷地減小,直到變化平穩(wěn),根據雙電層電容的理論推導和實驗結果相結合,我們得出,超聲次數的增加相對介電常數在減小,所以納米氣泡在不斷地覆蓋電極表面。超聲波頻率的大小對納米氣泡的生成也有很大關系,隨著超聲波頻率的增大,電容在不斷下降,納米氣泡在不斷地增多增大,覆蓋的點擊面積在不斷的變大。除此之外,我們還用傳統(tǒng)的醇水替換法在玻碳電極表面產生納米氣泡,然后用電化學工作站來測試對電極的影響。通過用醇水替換法測得替換前和替換后電容,比較后發(fā)現替換后電容變小,根據理論推導與實驗結果得出,醇水替換后在玻碳電極上產生了納米氣泡。我們又用脫氣的醇,脫氣的水和脫氣的電解質溶液做了上述實驗,發(fā)現替換前和替換后電容變化很小。由此證明了,醇水替換法也可以在玻碳電極表面產生納米氣泡。并且可以用電化學工作站測試出其對電極的影響的大小。
[Abstract]:In recent years, interface problems have become more and more difficult and hot. The existence of nano-bubbles at the solid-liquid interface originates from the study of the mechanism of surface hydrophobic long-range gravity. In the classical thermodynamic theory, nanometer bubbles in water at room temperature are considered to be unstable. In recent years, many phenomena on hydrophobic surfaces have shown that there are nano-bubbles at the solid-liquid interface. The existence of nano-bubbles has been confirmed by neutron diffraction technique and atomic force microscope (AFM). The most important thing is to make use of atomic force microscope (AFM) to study the imaging of nano bubbles, which proves the existence of nano bubbles. At present, atomic force microscope (AFM) (AFM). Is the most powerful method for direct detection of nanoscale bubbles at solid-liquid interface. When AFM is used to image the nanometer bubble, the substrate with flat surface is usually chosen. There are high-order pyrolytic graphite (HOPG), mica, gold, polystyrene film and so on. Up to now, the formation methods of nano-bubble have been widely studied, such as alcohol-water substitution, different solution substitution, direct drop addition, direct impregnation, rapid heating, electrochemical method and so on. Among them, the substitution method is one of the most studied methods in recent years. Alcohol-water substitution is a highly reproducible method which can generate a large number of nano-bubbles on different substrates. However, some organic substrates can not be used in organic solvents, and it is easy to introduce impurities due to the use of organic solvents. Therefore, in order to overcome these shortcomings, we need to find some new preparation methods of nano-bubble. Ultrasound gives us a new way of thinking. The cyclic voltammetry curves of the glassy carbon electrode were measured by the combination of nanometer bubbles produced by ultrasonic and electrochemical workstation. In this experiment, we used the degassed electrolyte solution and the undegassed electrolyte solution in the experiment, respectively. The formation of nanometer bubbles was obtained by comparing the two experimental results. We also studied the effect of ultrasonic time on the formation of nanometer bubbles. The longer the ultrasonic time, the more the capacitance of double layer decreased until the change was stable. According to the derivation, the nanometer bubble has larger and larger electrode coverage area with the increase of ultrasonic time. The influence of ultrasonic frequency, with the increase of ultrasonic frequency, the double-layer capacitance also decreases continuously until the change is stable. According to the theoretical derivation of double-layer capacitance and the experimental results, we get, With the increase of ultrasonic frequency, the relative dielectric constant is decreasing, so the nanometer bubble is continuously covering the electrode surface. With the increase of ultrasonic frequency, the capacitance is decreasing, the nanometer bubble is increasing and the click-area is increasing. In addition, we also use the traditional alcohol-water replacement method to produce nano-bubbles on the surface of glassy carbon electrode, and then use an electrochemical workstation to test the effect on the electrode. The capacitance before and after substitution was measured by the method of alcohol-water substitution, and it was found that the capacitance became smaller after substitution. According to the theoretical derivation and experimental results, nano-bubbles were produced on glassy carbon electrode after the substitution of alcohol and water. We have done the above experiments with degassed alcohols, degassed water and degassed electrolyte solutions. It is found that the capacitance changes are very small before and after replacement. It is proved that nano-bubbles can also be produced on the surface of glassy carbon electrode by water-alcohol replacement method. The influence of the electrode on the electrode can be measured by an electrochemical workstation.
【學位授予單位】:上海師范大學
【學位級別】:碩士
【學位授予年份】:2016
【分類號】:O657.1;TB383.1

【相似文獻】

相關期刊論文 前10條

1 竹懷君;黃光勝;;染料敏化太陽能電池柔性對電極的研究進展[J];化工新型材料;2012年03期

2 李國;胡志強;高巖;劉敬肖;劉貴山;;染料敏化太陽能電池對電極的研究進展[J];材料導報;2007年12期

3 黃光勝;阮曉莉;竹懷君;;基于不同濃度鉑對電極的染料敏化太陽能電池的性能研究[J];功能材料;2011年02期

4 李靖;孫明軒;張曉艷;崔曉莉;;染料敏化太陽能電池對電極[J];物理化學學報;2011年10期

5 馬換梅;田建華;劉懿平;單忠強;;染料敏化太陽能電池低鉑對電極的制備和性能[J];化學工業(yè)與工程;2011年06期

6 楊盼;許晨陽;林紅;趙曉沖;李建保;;染料敏化太陽能電池碳對電極的制備及性能[J];硅酸鹽學報;2011年12期

7 儲玲玲;高玉榮;武明星;王琳琳;馬廷麗;;附著性能優(yōu)異的碳對電極的制備及其在染料敏化太陽能電池中的應用[J];物理化學學報;2012年07期

8 辛鋼;吳麗瓊;黃曉飛;溫斌;馬廷麗;;熱解鍍鉑工藝增強對電極的性能(英文)[J];稀有金屬材料與工程;2013年06期

9 丁雨田;尚興記;王t,

本文編號:2219380


資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/huaxue/2219380.html


Copyright(c)文論論文網All Rights Reserved | 網站地圖 |

版權申明:資料由用戶5ed48***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com