基于優(yōu)選波長的多光譜檢測系統(tǒng)快速檢測豬肉中揮發(fā)性鹽基氮的含量
[Abstract]:Volatile base nitrogen (TVB-N) content is an important physical and chemical index to evaluate the freshness of pork. In order to realize fast and nondestructive detection of pork freshness, the characteristic wavelengths related to the content of TVB-N in pork were selected. The light-emitting diode (LED) light source containing characteristic wavelength was used in the multispectral detection system to determine the content of TVB-N in pork. Firstly, the hyperspectral reflectance data of pork were detected by using VIS-NIR hyperspectral system, and the first derivative (FD) method was used to obtain the hyperspectral reflectance data. The partial least squares regression (PLSR) model of TVB-N content in pork was established by standard normal variable transformation (SNV) and other pretreatment methods. Then the stepwise regression algorithm (SWA), continuous projection algorithm (SPA), gene genetic algorithm (GA) was used to screen the characteristic wavelengths related to the TVB-N content. The PLSR model and the multivariate linear regression (MLR) model were established by using the selected characteristic wavelengths. Finally, the LED light source with characteristic wavelength was applied to the multispectral detection system, and the PLSR model and MLR model were established to determine the content of TVB-N in pork. The experimental results show that the characteristic wavelengths selected by SWA-SPAGA can well reflect the information of the whole spectrum, the model is effective and the number of variables is greatly reduced. The LED light source with optimized characteristic wavelengths can be used to detect the TVB-N content in pork in a multispectral detection system. The results of MLR model are better than those of PLSR model. The correlation coefficient of correction set and the root mean square error of correction set are 0.9050, respectively. The correlation coefficient of prediction set and the root mean square error of prediction set are 0.9040 and 3.81 脳 10 ~ (-5), respectively.
【作者單位】: 中國農(nóng)業(yè)大學(xué)工學(xué)院國家農(nóng)產(chǎn)品加工技術(shù)裝備研發(fā)分中心;
【基金】:國家重點(diǎn)研發(fā)計(jì)劃(2016YFD0401205)
【分類號】:O657.33;TS251.51
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 樊書祥;黃文倩;李江波;趙春江;張保華;;LS-SVM的梨可溶性固形物近紅外光譜檢測的特征波長篩選[J];光譜學(xué)與光譜分析;2014年08期
2 孫紅梅,彭慰先,孫桂娟;二氧化硫光譜檢測技術(shù)[J];環(huán)境監(jiān)測管理與技術(shù);2004年03期
3 王冬媛,趙一兵,孫旭峰,郭祥群,許金鉤;光譜檢測新技術(shù)應(yīng)用研究—Ⅰ.吸光標(biāo)記染料的測定[J];福州大學(xué)學(xué)報(bào)(自然科學(xué)版);1999年S1期
4 王冬媛,趙一兵,孫旭峰,郭祥群,許金鉤;光譜檢測新技術(shù)應(yīng)用研究-Ⅱ.吸光染料標(biāo)記測定蛋白質(zhì)[J];福州大學(xué)學(xué)報(bào)(自然科學(xué)版);1999年S1期
5 張宇峰;;關(guān)于土壤重金屬光譜檢測方法的探析[J];科技視界;2014年02期
6 曹暉;胡洛娜;周延;;融合波長選擇和異常光譜檢測的天然氣燃燒過程定量分析方法[J];光譜學(xué)與光譜分析;2012年10期
7 施新花;;試析土壤重金屬光譜檢測技術(shù)的發(fā)展進(jìn)程[J];中國新技術(shù)新產(chǎn)品;2013年11期
8 汪希偉;趙茂程;居榮華;;電可調(diào)濾光器光譜圖像特征波長的提取方法[J];南京林業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版);2014年02期
9 李剛;熊嬋;李家星;林凌;佟穎;張寶菊;;高光譜檢測復(fù)雜混合溶液的Monte Carlo仿真研究[J];光譜學(xué)與光譜分析;2011年11期
10 張文磊;;試論土壤重金屬光譜檢測技術(shù)[J];資源節(jié)約與環(huán)保;2014年05期
相關(guān)會(huì)議論文 前1條
1 屠振華;馮霖;孫麗娟;康穎;籍保平;慶兆s,
本文編號:2198235
本文鏈接:http://sikaile.net/kejilunwen/huaxue/2198235.html